Escuela de Geometría y Topología Grupos de Lie y Geometría Diferencial Tarea 2

8-11 de abril de 2025

1. Dado $\alpha \in \mathbb{R}$ defina el mapeo

$$\varphi: \mathbb{R} \to \mathbb{T}^2$$
$$\varphi(t) = (e^{2\pi i t}, e^{2\pi i \alpha t}).$$

- a) Probar que φ es un homomorfismo de grupos de Lie, i.e. diferenciable.
- b) Probar que existe $t_0 \in \mathbb{R} \setminus \{0\}$ tal que $\varphi(t_0) = \varphi(0)$ si y sólo si $\alpha \in \mathbb{Q}$.
- 2. Probar que los grupos O(n), U(n) y Sp(n) son compactos.
- 3. Dibujar las órbitas de $e_1 = (1,0)$ respecto de la representación del grupo (1,1) en \mathbb{R}^2 . Utilizar el dibujo para probar que el grupo O(1,1) no es compacto.
- 4. Denotamos $P(n) = \{P \in SL(n, \mathbb{R}) : P \text{ es simétrica positiva definida}\}.$
 - a) Probar que el mapeo

$$P(n) \times SO(n) \to SL(n, \mathbb{R})$$

 $(P, A) \mapsto PA,$

es biyectivo y diferenciable.

b) Concluir del inciso anterior que se tiene un difeomorfismo natural

$$P(n) \simeq SL(n, \mathbb{R})/SO(n)$$
.

(Se puede ver que este cociente define un espacio Riemanniano simétrico)