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Markov processes and Cramér’s
condition II

Abstract

This chapter is a continuation of Chapter III. We indicate how the methods used there can be extended
to study the recurrent extensions of a positive self–similar Markov process that makes a jump to 0. The
unique excursion measure n under which the excursion process leaves 0 continuously is constructed as
well as its associated self–similar recurrent extension. The image under time reversal of n is determined
and we construct a dual self–similar recurrent Markov process associated to it. We make explicit the
law of the meander process and that of the excursion process conditioned to have a given length. We
construct a self–similar Markov process conditioned to hit 0 continuously.
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1 Introduction

Let (Qx, x ≥ 0) be the law of a R+–valued self-similar Markov process Y started at x ≥ 0. Assume
that Y hits 0 at some finite time and then dies. We will refer to (Y,Q) as the minimal process. This
chapter is the companion of Chapter III. There we studied the excursion measures and the recurrent
extensions of a self–similar Markov process Y that hits 0 continuously, i.e.

Qx(T0 <∞, YT0− = 0) = 1 for all x > 0,

where T0 = inf{t > 0 : Yt− = 0 or Yt = 0}. Here we are interested in the same problem but for a
self–similar Markov process that hits 0 by a jump a.s.

Qx(T0 <∞, YT0− > 0) = 1 for all x > 0. (1)

As was proved by Lamperti [21], the former corresponds to a self–similar Markov process associated
to a Lévy process ξ with an infinite lifetime and which drifts to −∞, limt→∞ ξs = −∞ a.s., while the
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90 Recurrent extensions of s.s. Markov processes and Cramér’s condition II

latter corresponds to one associated to a Lévy process killed at an independent exponential time (i.e.
jumps to −∞ with some strictly positive rate).

In this Chapter, instead of using Brownian motion as a thread for introducing our main results, as
we did in Chapter III, we prefer to use stable processes with negative jumps, that is Lévy processes
which are self–similar. This choice is more appropiate to the present framework since it is well known
that stable processes with negative jumps hit ] − ∞, 0[ a.s. by a jump. As a consequence a stable
process killed at its first hitting time of ]−∞, 0[ is a positive self–similar Markov process that satisfies
the property (1). With this in mind we next briefly recall some known results on stable processes. We
refer to Chaumont [8, 10] for an account of stable processes and their excursion theory.

Let (X,P ) be an a–stable Lévy process for a ∈]0, 2[, i.e. a real–valued Lévy process that is 1/a–
self–similar, and we assume that X has negative jumps and that |X| is not a subordinator. We denote
by P 0 the law of the process X killed at its first entrance into ]−∞, 0[ and take 0 as a cemetery point.
Since X has negative jumps we have that X hits ]−∞, 0] by a jump and

P 0
x (XT0− > 0, T0 <∞) = 1, ∀x > 0,

where T0 = inf{t ≥ 0 : X0
t = 0}. We denote (ξ,Q) the Lévy process associated to (X0, P 0) via

Lamperti’s [21] transformation. According to Lamperti, under our assumptions the real–valued Lévy
process (ξ,Q) is a Lévy process killed at an independent exponential time. A consequence of the
results of Silverstein [25] is that the function

hρ(x) = xa(1−ρ), x ≥ 0, ρ = P (X1 ≥ 0),

is, up to a multiplicative constant, the unique invariant function for P 0, i.e. for any t > 0

P 0
x (hρ(Xt)) = hρ(x), for all x ≥ 0.

It follows that the function h(x) = ea(1−ρ)x, x ∈ R, is an invariant function for the process (ξ,Q).
Next, let P \ be the h–transform of P 0 via the invariant function hρ. The probability measure P \ is
the law of a positive 1/a–self–similar Markov process such that

P \x( lim
t→∞

Xt = ∞, T0 = ∞) = 1 x ≥ 0.

It is not hard to see that the Lévy process associated to (X\, P \) via Lamperti’s transformation is in
fact the process (ξ,Q) h–transformed via the function h(x) = ea(1−ρ)x, x ∈ R, and can be interpreted
as (ξ,Q) conditioned to drift to ∞. Furthermore, Chaumont [8, 10] showed that the measures P and
P \ are related in the same way as the law of a Brownian motion killed at 0 is related to that of a
Bessel(3) process, see e.g. [22]. Using this fact Chaumont obtains a description of the unique excursion
measure n compatible with the law of (X0, P 0) such that n(X0+ > 0) = 0 and n(1− e−T0) = 1, which
is reminiscent of Imhof’s [18] description of Itô’s excursion measure for the Brownian motion using
the law of a Bessel(3) process. The measure n is the Itô’s excursion measure of X reflected at its
infimum, that is ((Xt − infs≤tXs, t ≥ 0), P ). In section 2 we obtain, under some hypotheses, results
that are analogous to those above and then are used to construct the unique excursion measure, say
n, compatible with (Y,Q) and such that n(Y0+ > 0) = 0 and n(1 − e−T0) = 1. Associated to this
excursion measure there is a unique self–similar recurrent extension of the process (Y,Q), say (Ỹ , Q̃),
which, in the case of the stable process corresponds to the stable process reflected at its infimum.

We noted above that (X0, P 0) hits 0 by a jump and, by the Markov property, it follows that
n(XT0− = 0) = 0, i.e. the excursions end by a jump a.s. Chaumont [8] Corollaire 1 proved that
conditionally on the value of XT0− the image under time reversal of n is equal to the law, say P ∗↓, of
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the dual stable process, (X∗, P ∗) = (−X,P ), killed at its first hitting time of ]−∞, 0] and conditioned
to hit 0 continuously. In part (ii) of Theorem 2 we determine the image under time reversal of n and
we deduce therefrom that a similar property for the image under time reversal of n conditioned on the
value of YT0− still holds. In part(iii) of Theorem 2 we construct a process Zθ whose excursion measure
from 0 is the image under time reversal of n and which is in weak duality with the process Ỹ . Then
we prove that the process Zθ started at 0 is equal in law to the process obtained by time reversing
one by one the excursions from 0 of the process Ỹ started at 0. The latter result is reminiscent
of Theorem 4.8 of Getoor and Sharpe [16]. In the stable process setting one can use the result
of Doney [12] to interpret the process Zθ as the process (X∗, P ∗) conditioned to stay positive and
reflected at its future infimum. Doney gives a pathwise construction of a Lévy process conditioned to
stay positive by using Tanaka’s [26] method.

Section 4 is devoted to the construction of the law under n of the excursion process conditioned by
its length and to establishing an absolute continuity relation between this law and that of the meander
process. This relation between the law of the excursion process conditioned by its length and that of
the meander process was established by Chaumont [10] Théorème 2 for stable processes with negative
jumps.

In addition to (X\, P \) there is another process, say (X↓, P ↓), associated to (X0, P 0) which plays
an important rôle in the understanding of n. This is process can be thought of as (X0, P 0) con-
ditioned to hit 0 continuously. More precisely, Silverstein’s [25] results imply that the function
h′ρ(x) = xa(1−ρ)−1, x ≥ 0 is excessive for (X0, P 0). Using this, Chaumont [8] Section 1.3 constructs a
process (X↓, P ↓) as a h–transform of (X0, P 0) via the function h′ρ and shows that this is a self–similar
Markov process that hits 0 continuously. Actually, the function h↓(x) = exp{(a(1− ρ)− 1)x}, x ∈ R,
is invariant for the Lévy process (ξ,Q) and the corresponding h–transform can be thought of as (ξ,Q)
conditioned to tend to −∞ as the time tends to ∞. The purpose of Section 5 is, under supplementary
hypotheses, to provide a construction of a self–similar Markov process Y ↓ that can be thought ofas
(Y,Q) conditioned to hit 0 continuously. The results of Section III.3 can be applied to this process to
ensure the existence of an excursion measure n↓, such that n↓(X0+ > 0) = 0 and n↓(XT0− > 0) = 0.
Furthermore this excursion measure is absolutely continuous w.r.t. the excursion measure n .

In Section 6.1 we verify that stable processes with negative jumps satisfy our hypotheses and we
go into more detail about the results recalled above. Moreover, with the aim of establishing further
connections with the results in Chapter III in Section 6.2, we work in the framework of Section III.5
to determine the weak dual of a self–similar Markov process that leaves 0 by a jump and hits 0
continuously.

2 Settings and first results

Our first purpose is to establish the analogues of Propositions III.2 and III.3 and Theorems III.1 and
III.2 for the class of self–similar Markov processes that hit 0 by a jump. With this aim we recall
that the techniques used in the proofs of those results are based essentially on two facts which are
deduced from the hypothesis that the underlying Lévy process satisfies Cramér’s condition. Under
this assumption we can ensure that there exists a θ > 0 such that the function h(x) = xθ, x ≥ 0 is
invariant for the semi-group of the process Y, and that the law Q\

x, which is the h–transform of Qx

via h(x) = xθ, has a limit Q\
0+ as x goes to 0 in the sense of finite dimensional laws. The probability

measure Q\
x can be viewed as the law of the process Y conditioned to never hit 0. Therefore, in order

to establish the main results of sections III.2 and III.3 in the present case, we just have to ensure that
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the latter facts still hold and the same proofs will still be valid. We devote this section to this task.

Let Q′ be a measure on the space (D,D), of càdlàg trajectories with values in R endowed with the
σ–algebra generated by the coordinate maps and (D′t, t ≥ 0) the natural filtration. Assume that under
Q′ the canonical process is a Lévy process and that the convex set

C = {λ ∈ R : Q′(eλξ1) <∞},

contains a point different from 0, C \ {0} 6= ∅. Then the characteristic exponent of ξ, i.e. Ψ : R → C,
defined by

Q′(eiλξ1) = e−tΨ(λ) λ ∈ R,

admits an analytic extension to the complex strip −=(z) ∈ C. Thus we can define the Laplace exponent
ψ : C → R of Q′ by

Q′(eλξ1) = eψ(λ), with ψ(λ) = −Ψ(−iλ), λ ∈ C.

Hölder’s inequality implies that ψ is a convex function on C. Let Q be the law of the Lévy process ξ
which is obtained by killing ξ′ at a rate k, that is ξ′ is killed at an independent exponential random
variable of parameter k > 0. Then the Laplace exponent ψk of ξ under Q is

Q(eλξ1) = eψk(λ), ψk(λ) = ψ(λ)− k, λ ∈ C.

We will denote by ζ the lifetime of ξ, by (Dt, t ≥ 0) the filtration of the killed process, by ∆ the
cemetery point for ξ and, as usual we extend the functions f : R → R to R∪∆ by f(∆) = 0.

We assume henceforth

(HI–a) ξ is not arithmetic, i.e. the state space is not a subgroup of cZ for any real c;

(HI–b) there exists θ > 0 such that Q(eθξ1 , 1 < ζ) = 1;

(HI–c) Q(ξ+1 e
θξ1 , 1 < ζ) <∞.

We will refer to (HI–b) as Cramér’s condition by analogy with Chapter III. Condition (HI-b)
holds if and only if we kill ξ′ at an independent exponential time k = ψ(θ) for some θ in C∩]0,∞[. A
sufficient condition for (HI-c) is that θ belongs to the interior of C. Cramér’s condition implies that the
function h(x) = eθx, x ∈ R, is invariant for the semi-group of ξ under Q . Let Q\ be the h–transform
of Q via the function h(x) = eθx. That is Q\ is the unique measure on the space of càdlàg trajectories
with lifetime such that

Q\(FT ) = Q(FT eθξT , T < ζ) for every stopping time T of Dt.

Moreover, under Q\ the canonical process still is a Lévy process but with infinite lifetime and finite
mean m\ = ψ′(θ) > 0, owing to (HI-c) and the convexity of ψk. Thus ξ\ drifts to ∞, lims→∞ ξs = ∞
Q\–a.s. The characteristic exponent of ξ\ is given by Ψ\(λ) = Ψ(λ− iθ) + k for λ ∈ R .

Hereafter we take an arbitrary fixed α > 0. Next, let (Qx, x > 0) be the law of the α–self–similar
Markov process Y associated to (ξ,Q) via Lamperti’s transformation. That is, let

At =
∫ t

0
exp{(1/α)ξs}ds t ≥ 0

and let τ(t) be its inverse,
τ(t) = inf{s > 0 : As > t},
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with the convention inf{∅} = ∞. For x > 0, let Qx be the law of the process

Yt = x exp{ξτ(tx−1/α)}, t > 0,

with the convention that the above quantity is 0 if τ(tx−1/α) = ∞. The Volkonskii theorem ensures
that the process Y is a strong Markov process in the filtration (Gt = Dτ(t), t ≥ 0). Furthermore,
by construction the process Y has the scaling property: for every c > 0 the law of the process
(cYtc−1/α , t ≥ 0) under Qx is Qcx . It follows that Y has a finite lifetime T0 = inf{t > 0 : Yt = 0} and
that it has the same law under Qx as x1/αAe under Q′ with

Ae =
∫ e

0
exp{(1/α)ξ′s}ds, (2)

with e an exponential random variable of parameter k independent of ξ′. Since ξ has a finite lifetime,
Y hits 0 by a jump in finite time and then dies. We denote (Y, T0) the process killed at 0 and by
(Pt, t ≥ 0) and (Vq, q > 0) its semi-group and resolvent respectively. Observe that the results of
Section III 2.3 are still valid under the assumptions of this chapter since their proofs only use the
property that the self–similar Markov process hits 0 in a finite time a.s.

Remark 1. The process Y is obtained by applying first an operation of killing and then a time change
to the Lévy process. If the order of this construction is inverted, first time change and then killing
according to a multiplicative functional, we obtain an equivalent self–similar Markov process. More
precisely, given a Lévy process with law Q′ and infinite lifetime, we construct a self–similar Markov
process (Y ′,Q′x, x ≥ 0) via Lamperti’s transformation of ξ′. This process either hits 0 continuously or
never hits 0 a.s. Next we kill the process Y ′ according to the multiplicative functional

Mt = exp{−kϕ(t)}, ϕ(t) =
∫ t

0
(Y ′s )

−1/αds, t < T ′0 = inf{r > 0 : Y ′r = 0},

to obtain a self–similar Markov process Y ′′. See Lamperti [21] for a detailed study of the additive
functional ϕ. The Feymann-Kac formula allows us to determine the infinitesimal generator of Y ′′,
which is equal to that of Y. Thus the processes Y and Y ′′ are equivalent.

After this slight digression on the construction of Y we continue with our program. Let (Q\
x, x > 0)

be the law of the α–self–similar Markov process Y \ associated to the Lévy process ξ\ with law Q\ via
Lamperti’s transformation. Since ξ\ drifts to ∞ we have that Y \ never hits 0 and limt→∞ Y

\
t = ∞,

Q\
x–a.s. for all x > 0. As in Section III.3, the process Y \ can be thought of as the process Y conditioned

never to hit 0, thanks to the following statements which are the analogues of Proposition III.2

(i) Let x > 0 be arbitrary. We have that Q\
x is the unique measure such that for every Gt stopping

time, T, we have
Q\

x(A) = x−θ Qx(A Y θ
T , T < T0),

for any A ∈ GT . In particular, the function h∗ : [0,∞[→ [0,∞[ defined by h∗(x) = xθ is invariant
for the semi-group Pt.

(ii) For every x > 0 and t > 0 we have

Q\
x(A) = lim

s→∞
Qx(A | T0 > s),

for any A ∈ Gt.
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The proof of (i) is the same as (i) in Proposition III.2; the proof of (ii) needs a lemma just as in
the proof of (ii) in Proposition III.2

Lemma 1. Under the hypothesis (HI) we have that there exists a constant C ∈]0,∞[ such that

lim
t→∞

tαθ Q′(Ae > t) = C.

Moreover, if 0 < αθ < 1 then
C =

α

m\
Q′(A−(1−αθ)

e ).

Proof. This proof, like that of the analogous result in Chapter III, is based on a result of Kesten [20]
and Goldie [17] on random equations. We claim that Ae has the same law as D + MA′e′ with
D =

∫ 1
0 exp{ξ′s}1{s<e}ds, M = e(1/α)ξ′11{1<e} and A′e′ with the same law as Ae and independent of

(D,M). Furthermore, Q′(Dαθ) < ∞. These two facts enable us to apply the results of Kesten and
Goldie to prove that

lim
t→∞

tαθ Q′(Ae > t) = C,

for some C ∈]0,∞[ whose expression can be found in [17]. Let f : R+ → R+ be a measurable and
bounded function and put D̃ =

∫ 1
0 exp{(1/α)ξ′s}ds and M̃ = exp{(1/α)ξ′1}. Indeed, using the lack of

memory of the exponential law we obtain

Q′(f(Ae)) = Q′(f(D)1{e<1}) + Q′(1{e>1}f(D̃ + M̃

∫ e−1

0
exp{(1/α)(ξ1+s − ξ1)}ds))

= Q′(f(D +MA′e′)1{e<1}) + e−kQ′(f(D̃ + M̃A′e′))

= Q′(f(D +MA′e′)1{e<1}) + Q′(f(D +MA′e′)1{e>1})

= Q′(f(D +MA′e′)),

(3)

where we observe that in the second equality the random variable A′e′ is independent of σ(ξ′s, s ≤ 1)
and e. We next prove that Q′(Dαθ) <∞.

Q′(Dαθ) ≤ Q′(sup
{
eθξs1{s<e}; s ≤ 1

}
)

≤ e

e− 1

(
1 + sup

{0≤s≤1}
Q′(eθξs log+(eθξs1{s<e})1{s<e})

)

=
e

e− 1

(
1 + θ sup

{0≤s≤1}
Q′(eθξsξ+s 1{s<e})

)
<∞,

(4)

where the second inequality is due to the fact that the process eθξs1{s<e} is a positive martingale for
Q′ and a so we can apply a Doob’s inequality, with the convention 0 log+(0) = 0. The last right–hand
term is finite due to assumption (HI–c).

In the case 0 < αθ < 1, the value of the constant C is determined as in the proof of Lemma III.4
using the identity

Q′(Aαβe ) =
αβ

−ψk(β)
Q′(Aαβ−1

e ), β < θ,

whose proof can be found in Carmona, Petit & Yor [7] Proposition 3.1.(i)
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Corollary 1. For each β ∈]0, θ ∧ (1/α)[ there exists a self–similar recurrent extension of (Y, T0)
that leaves 0 a.s. by a jump according to the jump-in measure ηβ(dx) = bα,βx

−(1+β)dx, x > 0, with
bα,θ = β/Q′(Aαβe )Γ(1− αβ).

The proof of Corollary 1 is a straightforward consequence of Lemma 1 and Proposition III.1; see
the remarks at the end of section III.2.

Furthermore, since the Lévy process ξ\ has a strictly positive finite mean Q\(ξ1) = m\ we know
from [1] that there exists a measure Q\

0+ which is the limit in the sense of finite dimensional laws of
Q\

x as x→ 0 + . Under Q\
0+ the law of Ys is an entrance law for the semi-group of Y \ and is related

to the law of the Lévy exponential functional J =
∫∞
0 exp{−(1/α)ξ\s}ds by the formula

Q\
0+(f(Y 1/α

s )) =
α

m\
Q\(f(s/J)J−1), s > 0, (5)

for f measurable and positive, see [1]. Assume 0 < αθ < 1. Then to construct an excursion measure
n compatible with the minimal process (Y, T0) such that n(Y0+ > 0) = 0 and n(1 − e−T0) = 1, we
can argue as in the proof of Theorem III.1. Indeed, this is an h–transform of Q\

0+ via the excessive
function x−θ, x > 0. Furthermore, the proof of Proposition III.3 can also be extended to the present
case to ensure that the measure n is the unique excursion measure with these properties, that is
compatible with the minimal process (Y, T0). We have the following results.

Theorem 1. Assume 0 < αθ < 1.

(i) The excursion measure n is such that for every Gt–stopping time T

n(AT , T < T0) = (aα,θ)−1 Q\
0+(ATY −θT ), AT ∈ GT ,

with aα,θ = αQ\(J−(1−αθ))Γ(1− αθ)/m\.

(ii) The q–potential of the entrance law (ns, s > 0), associated to n, admits the representation∫ ∞
0

e−qs ns fds = (m\aα,θ)−1

∫ ∞
0

f(y)Q\(e−y
−1/αJ)y1/α−1−θdy,

for f ∈ Cb(R+).

(iii) The minimal process (Y, T0) admits a unique self–similar recurrent extension Ỹ that leaves 0
continuously a.s. The resolvent of Ỹ is given by

Uqf(0) =
1

(m\aα,θ)qαθ

∫ ∞
0

f(y)Q\(e−y
−1/αJ)y1/α−1−θdy

and Uqf(x) = Vqf(x) + Qx(e−qT0)Uqf(0), for x > 0 and f ∈ Cb(R+). The resolvent Uq is
Fellerian.

The proof of (i) in Theorem 1 is the same as that of Theorem III.1.(i); (ii) in Theorem 1 is proved
as Proposition III.3.(i); last, the proof of Theorem III.2.(i) applies to prove (iii) in Theorem 1.

Remark 2. We can deduce as in the proof of Proposition III.3 that

Q′(A−(1−αθ)
e ) = Q\(J−(1−αθ)).

Remark 3. If αθ ≥ 1, the arguments given in Theorem III.2 show that there does not exist an
excursion measure compatible with the semigroup of Y such that the excursion process leaves 0
continuously.
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3 Time reversed excursions

In this section we are interested in determining the image under time reversal of the unique excursion
measure n compatible with Y such that n(Y0+ > 0) = 0. Furthermore, we would like to determine
whether the self–similar recurrent extension Ỹ of Y admits a weak dual process and, if so, to identify
it.

To this end, we recall that the process Y \ has a weak dual that we denote by Ŷ \. The latter is
the self–similar Markov process associated to −ξ\, the dual of ξ\. More precisely, let V \

q , V̂
\
q be the

q–resolvents of Y \ and Ŷ \ respectively. Then∫ ∞
0

dxx1/α−1f(x)V \
q g(x) =

∫ ∞
0

dxx1/α−1g(x)V̂ \
q f(x),

for all measurable functions f, g : R+ → R+ . See Bertoin and Yor [1]. Next, since the process Y is
the h-transform of Y \ via the excessive function h(x) = x−θ, x > 0, we have that the q–resolvent Vq
of Y is in weak duality with V̂ \

q with respect to the measure x1/α−1−θdx, x > 0.

Since the process −ξ\ drifts to −∞ it follows that

Q̂\
x(YT0− = 0, T0 <∞) = 1 for all x > 0.

Now, that Y hits 0 by a jump implies that the excursions of Ỹ away from 0 terminate by a jump a.s., i.e.
n(YT0− = 0) = 0, and by the self–similarity it is easy to prove that n(YT0− ∈ dx) = x−(1+γ)dx, x > 0
for some γ > 0. These two statements allow us to guess that the candidate for a weak dual of Ỹ
should be a recurrent extension of Ŷ \ that leaves 0 by a jump a.s. We formalize this statement in the
following theorem. Let % : D+ → D+ be the operator of time–reversal at time T0,

%Y (t) =

{
Y(T0−t)− if 0 ≤ t < T0 <∞
0 otherwise,

and %n the image under time reversal at T0 of n .

Theorem 2. (i) For each β ∈]0, θ] the process Ŷ \ admits a self–similar recurrent extension Zβ =
(Zβ,t, t ≥ 0) that leaves 0 by a jump according to the jumping-in measure

ηβ(dx) = bα,βx
−(1+β)dx, x > 0,

with bα,β = β/Γ(1− αβ)Q̂\(Iαβ), and I =
∫∞
0 exp{(1/α)ξ̂\s}ds. The resolvent of Zβ is given by

Uqf(0) = bα,βq
−αβ

∫ ∞
0

y−(1+β)V̂ \
qf(y)dy; Uqf(x) = V̂ \

qf(x) + Q̂\
x(e
−qT0)Uqf(0),

for x > 0.

(ii) The image under time reversal of n, is given by

%n(·) = bα,θ

∫ ∞
0

dxx−(1+θ)Q̂\
x(·).

In particular, n(YT0− ∈ dx) = bα,θx
−(1+θ)dx, x > 0 and %n(·|YT0− = x) = Q̂\

x(·).
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(iii) The process Zθ is in weak duality with Ỹ w.r.t. x1/α−1−θdx, x > 0.

We have noted that in the stable processes setting, the self–similar process Ỹ corresponds to a stable
process reflected at its infimum and Zθ is, as we will see later, the dual stable process conditioned
to stay positive and reflected at its future infimum. Thus, in this case, (iii) in Theorem 2 establishes
that these processes are in weak duality. We have said in the Introduction that Zθ has the same law
started at 0 as the process obtained by time reversing one by one the excursions from 0 of Ỹ started
from 0. This result still holds in a greater generality. To give a precise statement, in the sequel, we
denote Q̃· and Q̃

∧
· the law of the processes Ỹ and Zθ, respectively. We have the following corollary

which is reminiscent of Theorem 4.8 of Getoor & Sharpe [16].

Corollary 2. For any t > 0, let gt = sup{s < t : Ỹs = 0}, dt = inf{s > t : Ỹs = 0} and

←
Y t =

{
Y(dt−(t−gt))− if 0 < gt < dt <∞
Yt otherwise.

Then the process
←
Y = (

←
Y t, t ≥ 0) has the same law under Q̃0 as Zθ under Q̃

∧
0 .

We postpone the proof of Corollary 2 until subsection 3.1.

Proof of Theorem 2. (i) According to Proposition III.1 all that we have to verify in order to prove (i)
is that Q̂\(Iαβ) < ∞ for every β ∈]0, θ]. Indeed, due to (HI–c) we have that −Q̂\(ξ1) = m\ ∈]0,∞[,
and by the identity (5) that Q̂\(I−1) = m\/α <∞ (observe that I under Q̂\ is equal to J under Q\).
Therefore, for every 0 < αβ ≤ αθ < 1 we have that Q̂\(Iαβ−1) < ∞. The claim follows using the
identity

Q̂\(Iαβ) =
αβ

−ψ(β)
Q̂\(Iαβ−1) for 0 < β ≤ θ, (6)

with ψ : [0, θ] → R defined by

Q̂\(eλξ1) = eψ(λ), 0 ≤ λ ≤ θ.

The identity (6) can be proved with arguments similar to those given by Bertoin & Yor [2]. Note that
ψ(λ) = ψk(θ − λ), for every 0 ≤ λ ≤ θ.

(ii) We first note that an application of Lemma III.3 proves that the entrance laws (ns(dy), s > 0) and

N θ
s f = bα,θ

∫ ∞
0

dx x−(1+θ)P̂ \sf(x), s > 0,

for the semi-groups (Pt, t ≥ 0) and (P̂ \s , s ≥ 0) respectively have the same potential∫ ∞
0

dsns f = Cα,αθ

∫ ∞
0

f(x)x1/α−1−θdx =
∫ ∞

0
dsN θ

s f,

with Cα,αθ = (m\aα,θ)−1. This enable us to use a result on time reversal of Kusnetzov measures
established in Dellacherie, Maisonneuve & Meyer [11] XIX.33 to verify the claimed result.

(iii) We should prove that for any q > 0 and f, g measurable positive functions∫ ∞
0

dxx1/α−1−θf(x)Uqg(x) =
∫ ∞

0
dxx1/α−1−θg(x)Uqf(x),
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with Uq the resolvent of Ỹ defined in Theorem 1. Indeed, this is an elementary consequence of the
identity (7) established in Lemma 2 below. Specifically,∫ ∞

0
y1/α−1−θf(y)Uqg(y)dy

=
∫ ∞

0
y1/α−1−θf(y)Vqg(y)dy + Uqg(0)

∫ ∞
0

y1/α−1−θf(y) Qy(e
−qT0)

=
∫ ∞

0
y1/α−1−θg(y)V̂ \

qf(y)dy

+
(∫ ∞

0
x1/α−1−θg(x)Q̂\

x(e
−qT0)dx

)(
bα,θq

−αθ
∫ ∞

0
y−(1+θ)V̂ \

qf(y)dy
)

=
∫ ∞

0
y1/α−1−θg(y)V̂ \

qf(y)dy + Uqf(0)
∫ ∞

0
y1/α−1−θg(y)Q̂\

y(e
−qT0)dy

=
∫ ∞

0
y1/α−1−θg(y)Uqg(y).

Lemma 2. For every q > 0 and f : R+ → R+ measurable

bα,θ

∫ ∞
0

y−(1+θ)V̂ \
qf(y)dy = Cα,αθ

∫ ∞
0

y1/α−1−θf(y) Qy(e
−qT0)dy, (7)

with Cα,αθ = (m\aα,θ)−1

We can prove Lemma 2 either by bare hands calculations or by using the following result proved
by Carmona, Petit and Yor [6] Proposition 2.3.

Lemma 3. The random variable Ae has a density ρ(t) = kQ\
1(Y

−(1/α)−θ
t ) for t > 0.

Proof of Lemma 2. Let W (x) = x−1/α−θ, x > 0. Using the fact that under Qy the law of T0 is that of
y1/αAe under Q′, the self–similarity and the weak duality between the resolvents V \ and V̂ \, we get

Cα,αθ

∫ ∞
0

dyy1/α−1−θf(y) Qy(e
−qT0)

= Cα,αθk

∫ ∞
0

dyy1/α−1−θf(y)
∫ ∞

0
dtQ\

1(Y
−1/α−θ
t )e−qy

1/αt

= Cα,αθk

∫ ∞
0

dyy1/α−1−θf(y)
∫ ∞

0
dsy−1/αy1/α+θ Q\

y(Y
−1/α−θ
s )e−qs

= Cα,αθk

∫ ∞
0

dyy1/α−1f(y)V \
qW (y)

= Cα,αθk

∫ ∞
0

dyy1/α−1W (y)V̂ \
q f(y).

The claim follows since bα,θ/k = Cα,αθ, due to identity (6), and k = ψ(θ).

Furthermore, Lemma 3 allows us to obtain a tail estimate for the law of T0.

Lemma 4. For any x > 0,

lim
ε→0+

Qx(T0 ≤ ε)
ε

= x−1/αk.
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Proof. First we prove that the limit exists. To this end we note that the function s 7→ fs(·) =
Q\
·(Y
−(1/α)−θ
s ), s > 0 is an exit law for the semigroup (P \t , t ≥ 0), i.e. for every s > 0, t ≥ 0,

P \t fs(x) = ft+s(x), x > 0. Thus the function Ct(·) =
∫ t
0 fs(·)ds is, in the terminology of potential

theory, an “additive process”

Ct+s(·) = Ct(·) + P \tCs(·), t, s ≥ 0.

An ergodic local theorem due to Feyel [14], ensures that the limit limt→0Ct/t, exists. In particular,
the following limit exists

lim
ε→0+

Q1(T0 ≤ ε)
ε

= lim
ε→0+

Q′(Ae ≤ ε)
ε

= lim
ε→0

1
ε

∫ ε

0
kQ\

1(Y
−(1/α)−θ
s )ds := a.

Using the self–similarity we have that under Qx the law of T0 is the same as that of x1/αT0 under Q1;
thus

lim
ε→0+

Qx(T0 ≤ ε)
ε

= x−1/αa.

We next prove that a = k. On the one hand, we use Fatou’s lemma twice to see that a ≥ k,

a = lim inf
ε→0

k

ε

∫ ε

0
Q\

1(Y
−(1/α)−θ
s )ds

≥ k
∫ 1

0
lim inf
ε→0

Q\
1(Y

−(1/α)−θ
uε )du

≥ k
∫ 1

0
Q\

1(lim inf
ε→0

(Y −(1/α)−θ
uε ))du = k.

On the other hand, Theorem 1 and Fatou’s lemma imply that

1 = lim inf
ε→0

n(1 < T0 ≤ 1 + ε)
n(1 < T0 ≤ 1 + ε)

= lim inf
ε→0

ε

n(1 < T0 ≤ 1 + ε)
n(ε−1 QY1

(T0 ≤ ε), 1 < T0)

= (cst) lim inf
ε→0+

Q\
0+(ε−1 QY1

(T0 ≤ ε)Y −θ1 )

≥ (cst) Q\
0+(lim inf

ε→0+
ε−1 QY1

(T0 ≤ ε)Y −θ1 ))

≥ (cst)aQ\
0+(Y −(1+αθ)/α)

1 ),

where cst = (Γ(1− αθ)/(αθaα,θ)) and aα,θ is defined in Theorem 1. The rightmost hand term in the
last inequality is equal to (a/k), which proves k ≥ a. To see this we recall that Q\

0+(Y −(1+αθ)/α)
1 ) =

α
m\ Q\(Jαθ) by identity (5) and using (6) we get

(cst)
α

m\
Q\(Jαθ) =

Q\(Jαθ)
αθQ\(J−(1−αθ))

= 1/k.

Remark 4. It is interesting to observe that the preceding tail estimate is equivalent to

lim
ε→0+

Q′(Ae ≤ ε)
Q′(e ≤ ε)

= 1.

This a natural fact if the Lévy process ξ′ does not drift to −∞, lim supt→∞ ξ′t = ∞ Q–p.s., since
in this case A∞ = ∞, Q′–a.s. and therefore the small values of Ae should depend just on those of
e. Whereas, if ξ′ drifts to −∞ then A∞ < ∞, Q′–a.s. and it is easily deduced from Lemma 4 that
Q′(A∞ ≤ ε) = o(ε).
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3.1 Proof of Corollary 2

Getoor & Sharpe [16] Theorem 4.8 proved an analogous result for any Markov processes X and X̂
which are in duality, whose semi–groups have dual densities w.r.t. an invariant measure ζ and such
that X leaves and hits continuously a recurrent regular state b. The proof of Getoor and Sharpe’s
result relies mainly on the fact (which they prove) that the excursion measure n̂ is the image under
time reversal of n, with n and n̂ the excursion measures of X and X̂ from b, respectively. This relation
between n̂ and n was proved by Mitro [23] assuming only that X and X̂ are weak duals and that the
excursions from b start and end continuously. It follows that Theorem 4.8 in [16] is still true under
these weaker hypotheses. Next, Kaspi [19] § 4 mentions that his results provide a tool to prove this
result in a greater generality, namely when X does not enter or leave b continuously. However, for the
sake of completeness we provide a sketch of the proof of Corollary 2.

First, we observe that versions of the processes Zθ and Ỹ can be constructed simultaneously using
the same P.P.P. of excursions. More precisely, take a Poisson point process ∆ = (∆s, s ≥ 0) with
values in D+ and characteristic measure n . Thus each atom is a path and T0(∆s) denotes its lifetime.
We set σt =

∑
s≤t T0(∆s), for t > 0. This defines a subordinator with Laplace exponent φ(λ) =

n(1 − e−λT0), λ > 0. Let Lt be the inverse of σ. On the one hand, the process Ỹ is constructed,
following [4], using this P.P.P. as we did in Chapter III.2. On the other hand, define a process Y

←
as

follows. For t ≥ 0, let s = Lt, thus σs− ≤ t ≤ σs, and

Y
←

(t) =

{
∆s((σs − t)−) if σs− < σs

0 if σs− = σs or s = 0.

Lemma 5. The process Y
←

is a self–similar recurrent extension of Ŷ \ and has the same law as Zθ.

Proof. Recall that % is the function that time-reverses the trajectories at their lifetimes. The image
under % of ∆, say %∆, still is a P.P.P. of excursions with characteristic measure %n . We have that the
subordinator σ̂ constructed as σ, but this time using %∆, is equal to σ and

Y
←

(t) =

{
%∆s(t− σ̂s−) if σ̂s− < σ̂s

0 if σ̂s− = σ̂s or s = 0.

Since %n is an excursion measure compatible with the law of Ỹ \ we have from results in Blumenthal [4]
that Y

←
is the unique self–similar recurrent extension of Ỹ \ whose excursion measure from 0 is %n .

Moreover, we have the equality between random sets

{t > 0 : Ỹ (t)} = {t > 0 :
←
Y (t)} = {t > 0 : Y

←
(t)},

and by construction it is easily seen that the processes
←
Y and Y

←
both started at 0, are identical. This

ends the proof of Corollary 2.

4 Normalized excursion and meander for Ỹ

Motivated by the description of Itô’s excursion measure for Brownian motion using the law of a
Bessel(3) bridge, in Section III.4 we obtained a description of the excursion measure n of Theorem III.1
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in terms the law of the excursion process conditioned to have a given length. The purpose of this
section is to obtain an analogous result for the excursion measure of Theorem 1.

With the aim of giving a handy description of the excursion measure conditioned by its length, in
the following proposition we construct a version of the conditional law n( · |T0 = r). For any r > 0,
define the function h\r : R+×R+ → R+ by

h\r(s, x) = Q\
x(Y

−(1/α)−θ
r−s )1{s<r}, x > 0, s ≥ 0,

and h\r(s, 0) = 0, s ≥ 0. Let br be the constant given by

br :=
α2θQ\(J−(1−αθ))

m\k
r−(1+αθ) =

αθ

kΓ(1− αθ)
aα,θr

−(1+αθ), (8)

with aα,θ defined in Theorem 1.

Proposition 1. (i) For any r > 0, the function h\r is excessive for the semi–group of the space–
time Markov process ((t, Y \

t ), t ≥ 0).

(ii) For any r > 0, the probability measure Λr over Gr− defined by

Λr(F ) = (br)−1 Q\
0+(Fh\r(t, Yt)), F ∈ Gt, t < r,

is such that for every H ∈ G

n(H) =
αθ

Γ(1− αθ)

∫ ∞
0

Λr(H)
dr

r1+αθ
.

Proof. The proof of (i) is a straightforward consequence of the Markov property.

For any r > 0, let Λr be the h transform of the space-time process over Y \ with law Q\
0+, via the

excessive function h\r. Then under Λr the space process Y \ is an inhomogeneous Markov process with
entrance law

Λr
s(f) = Q\

0+(f(Ys)h\r(s, Ys)), s > 0,

and for s, t ≥ 0 its transition probabilities are given by

Kr
t,t+s(x, dy) =

P \s (x, dy)h\r(t+ s, y)
h\r(t, x)

, x > 0, y > 0,

where the quotient is taken to be 0 if the denominator is 0. The measure Λr is a finite measure with
total mass

Λr(1) = lim
s→0

Λr
s(1)

= lim
s→0

Q\
0+(h\r(s, Ys))

= Q\
0+(Y −(1/α)−θ

r )
= br <∞,

where the third equality is a consequence of the Markov property and the fourth follows from (5).
To finish the proof we just have to prove that the probability measures Λr := (br)−1Λr satisfy the
identity in (ii) of Proposition 1. To that end it suffices to show the identity for any Ft of the form
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Ft = F ∩ {t < T0}, F ∈ Gt, t > 0. Indeed, recall from Theorem 1 that for every positive and Gt–
measurable Ht we have

n(Ht, t < T0) = (aα,θ)−1 Q\
0+(HtY

−θ
t ),

and the expression for b1 in (8). Therefore, using Fubini’s theorem and that the law of T0 under Qx

for x > 0 has a density

Qx(T0 ∈ ds)/ds = kxθ Q\
x(Y

−(1/α)−θ
s ), x > 0

and Q0(T0 ∈ ds) = δ0(ds), we get that

n(F ∩ {t < T0}) = n(1F
∫ ∞
t
kY θ

t Q\
Yt

(Y −(1/α)−θ
r−t )dr)

= k

∫ ∞
0

n
(
1FY θ

t Q\
Yt

(Y −(1/α)−θ
r−t )1{t<r}

)
dr

=
αθ

Γ(1− αθ)

∫ ∞
0

dr

r1+αθ
(br)−1 Q\

0+(1Fh\r(t, Yt))

=
∫ ∞

0

dr

r1+αθ
Λr(F ∩ {t < T0}),

where the last equality holds due to the fact that Λr is an h–transform of Q\
0+ .

By an argument similar to that given in the previous proof it is proved that for any x > 0, t > 0
and positive measurable g,

Qx(Ft ∩ {t < T0}g(T0)) =
∫ ∞

0
g(r)kxθ Q\

x(Y
−(1/α)−θ
r )

Q\
x(Fth\r(t,Xt))
h\r(0, x)

dr, Ft ∈ Gt.

That is, the h–transform of the spac–time process ((t, Y \
t ), t ≥ 0) started at (0, x) via the excessive

function h\r is a version of the conditional law

Qx(· |T0 = r).

As a consequence, the transition probabilities Kr
t,t+s defined in the proof of Proposition 1 are those of

Y conditioned to hit 0 at time r.

When the process Y = X0 is a stable process X killed at its first hitting time of the set ]−∞, 0],
Chaumont [10] proved that the law of the excursion process conditioned to have a given length is
absolutely continuous w.r.t. the law of the stable meander process. An analogous result still holds
in our setting. To give a precise statement we next recall the definition of the law of the meander
process. For any r > 0, the probability measure M r defined over D+([0, r]) by

M r(·) := n(· ◦ kr, T0 > r)/n(T0 > r),

with kr the killing operator at time r > 0, is called the law of the meander process. This corresponds
to the law of the process (Ỹgt+s, 0 ≤ s ≤ t − gt) conditioned by t − gt = r for some t > r and gt the
last hitting time of 0 before t, gt = sup{s ≤ t : Ỹs = 0}, cf. Getoor [15].

We can now state a corollary to Proposition 1 which is the analogue of Theorem 3 in [10]:

Corollary 3. For any r > 0, t < r and F ∈ Gt we have that

Λr(F ) =
rk

αθ
M r(FY −1/α

r ).
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Proof. On the one hand, by the very definition of the law of the meander and Theorem 1 we have
that

M r(F ) =
rαθΓ(1− αθ)

aα,θ
Q\

0+(F Y −θr ).

On the other hand, by Proposition 1 and the Markov property we have that

Λr(F ) = (br)−1 Q\
0+(Fh\r(t, Yt)) = (br)−1 Q\

0+(F Y −(1/α)−θ
r ).

The result follows by identifying the constants.

The law of the excursion process conditioned by its length Λr constructed in Chapter III.4 can be
thought of as the law of a bridge for the process with law E\0+ because the excursion hits 0 continuously.
In fact, it can be proved that for every t < r and F ∈ Gt,

Λr(F ) = lim
ε→0

E\0+(F |Xr ≤ ε).

The arguments used to prove a such result are similar to those given in [10] Lemme 2 and we omit
them. An analogue result does not have meaning for the law Λr since the excursions are ended by a
jump to 0 a.s. However, the following identity holds for any r > 0,

Λr(·) = lim
ε→0

n(·|r < T0 ≤ r + ε). (9)

This can be proved as in [10] or using the tail estimation in Lemma 4. Indeed, using the Markov
property and a dominated convergence argument we have that for any r > 0, t < r and F ∈ Gt

n(F |r < T0 ≤ r + ε) =
ε

n(r < T0 ≤ r + ε)
n(F ∩ {r < T0}

[
QYr

(T0 ≤ ε)/ε
]
)

∼ (kr1+αθΓ(1− αθ)/αθ)n(FY −1/α
r ),

as ε→ 0. By the Markov property and Proposition 1

(kr1+αθΓ(1− αθ)/αθ)n(FY −1/α
r ) = (cst) Q\

0+(Fh\r(t, Yt)) = Λr(F ),

with cst = (kr1+αθΓ(1− αθ)/αθ)(aα,θ)−1 = (br)−1.

Remark 5. The law of the excursion process conditioned by its length can be defined following
Chaumont [10] since most of his arguments are easily generalized to any self–similar Markov process.
The resulting measure is equal to the law Λr constructed here. We omit the details.

5 The process conditioned to hit 0 continuously

For the moment we leave aside hypotheses (HI-b,c) of Section 2 and work instead under hypotheses

(HI-d) there exists γ < 0 for which Q(eγξ11{1<ζ}) = 1.

(HI-e) Q(ξ−1 e
γξ11{1<ζ}) <∞.
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Under these hypotheses we will prove the existence of a self–similar Markov process Y↓ that can be
thought of as Y conditioned to hit 0 continuously.

The hypothesis (HI-d) implies that under Q the function h↓(x) = eγx, x ∈ R is an invariant function
for the semigroup of the Lévy process with law Q . Let Q↓ be the h–transform of Q via the invariant
function h↓. Under Q↓ the canonical process is still a Lévy process with infinite lifetime that drifts to
−∞. Furthermore, by hypothesis (HI-e), we have that m↓ = Q↓(ξ1) ∈]−∞, 0[. We will be interested
in the self–similar Markov process Y↓ of law (Q↓

x, x ≥ 0), which is the Markov process associated to
the Lévy process with law Q↓ via Lamperti’s transformation. Since the Lévy process ξ↓ drifts to −∞
we have that Y↓ hits 0 continuously at some finite time Q↓

x a.s. for every x > 0. As a consequence of
the following result we will refer to Y↓ as the process Y conditioned to hit 0 continuously.

Proposition 2. (i) For any x > 0, we have that Q↓
x is the unique measure such that for every

Gt–stopping time T we have

Q↓
x(FT , T < T0) = x−γ Qx(FTY

γ
T , T < T0),

for every FT ∈ GT .

(ii) For every x > 0, t > 0 we have

lim
ε→0

Qx(Ft ∩ {t < T0}|YT0− ≤ ε) = Q↓
x(Ft ∩ {t < T0}), Ft ∈ Gt.

The proof of (i) in Proposition 2 is an immediate consequence of the fact that Q↓ is an h–transform.
To prove (ii) we will need the following Lemma in which we determine the tail distribution of a Lévy
process at a given exponential time.

Lemma 6. Let σ be a Lévy process of law P. Assume that σ is non–arithmetic and that there exists
ϑ > 0 for which 1 < E(eϑσ1) < ∞, and E(σ+

1 e
ϑσ1) < ∞. Let Tλ be a exponential random variable of

parameter λ = logE(eϑσ1) and independent of σ. We have that

lim
x→∞

eϑxP (σTλ
≥ x) =

1− e−λ + λ

µ\ϑ
,

with µ\ = Q(σ1e
ϑσ1).

Lemma 6 is a consequence of the renewal theorem for real–valued random variables and an appli-
cation of Cramér’s method as explained by Feller [13] §XI.6.

Proof. The following three claims enable us to put Lemma 6 in a context similar to that of [13] XI.6.
First, the function Z(x) = P (σTλ

< x), satisfies a renewal equation. More precisely, for z(x) =∫ 1
0 dtλe

−λtP (σt < x) and L(dy) = e−λP (σ1 ∈ dy) we have that

Z(x) = z(x) +
∫ ∞
−∞

L(dy)Z(x− y).

This is an elementary consequence of the fact that the process (σ′s = σ1+s − σ1, s ≥ 0) is a Lévy
process independent of (σr, r ≤ 1) with the same law as σ. Second, the measure L is a defective law,
L(R) < 1, such that∫ ∞

−∞
eϑyL(dy) = e−λE(eϑσ1) = 1; and

∫ ∞
−∞

yeϑyL(dy) <∞,
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by hypothesis. Third, the function z\(x) = eϑx(z(∞)− z(x)) is directly Riemann integrable; with

z(∞) = lim
x→∞

z(x) =
∫ 1

0
dtλe−λtP (σt <∞) = 1− e−λ.

The latter follows using the fact that z\(x) = eϑx
∫ 1
0 dtλe

−λtP (σt ≥ x), is the product of an exponential
function and a decreasing one and that z\ is integrable. To see that z\ is integrable, use Fubini’s
theorem to establish ∫ ∞

−∞
z\(x)dx =

∫ 1

0
dtλe−λtE

(∫ ∞
−∞

dxeϑx1{σt≥x}

)
=

1
ϑ

∫ 1

0
dtλe−λtE(eϑσt)

=
λ

ϑ
<∞.

Therefore, we can repeat the arguments given in the proof of Theorem XI.6.2 in [13] but this time
using the renewal theorem for real–valued random variables to prove that

lim
x→∞

eϑxP (σTλ
≥ x) = lim

x→∞
eϑx(Z(∞)− Z(x))

=
z(∞)
µ\ϑ

+

∫∞
−∞ z

\(x)dx
µ\

=
1− e−λ + λ

µ\ϑ
.

Proof of Proposition 2 (ii). Observe that under Qx the random variable YT0− has the same law as
x exp(ξ′e) under Q′, with e an exponential random variable of parameter k = ψ(θ) = ψ(γ) > 0, and
independent of ξ′. Moreover, applying Lemma 6 to −ξ′ under Q′ we obtain by hypotheses (HI-d) that

lim
y→∞

e−γy Q′(ξe ≤ −y) =
1− e−k + k

γµ↓
:= dk,

with µ↓ = Q′(ξ1eγξ1) ∈] − ∞, 0[, which is finite by hypothesis (HI-e). Thus, we have the following
estimate of the left tail distribution of YT0−:

lim
ε→0

εγ Qx(YT0− ≤ ε) = xγdk. (10)

The proof of (ii) in Proposition 2 now follows by a standard application of the Markov property,
estimate (10) and a dominated convergence argument.

In the sequel, we will assume in addition that the hypotheses (HI-b,c) are satisfied. This implies
in turn that the hypotheses (H2) of Chapter III are satisfied. Indeed, for θ̂ = θ − γ we have that

Q↓(eθ̂ξ1) = Q(eθξ11{1<ζ}) = 1,

and
Q↓(ξ+1 e

θ̂ξ1) = Q(ξ+1 e
θξ11{1<ζ}) <∞,

by hypotheses (HI-b) and (HI-c), respectively. By hypothesis (HI-e) we have that

Q↓(ξ1) = m↓ ∈]−∞, 0[.
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Since the measure Q↓ satisfies the hypotheses (H2) of Chapter III we know from Theorem III.1 that
if 0 < α(θ − γ) < 1 then there exists a unique excursion measure n↓ compatible with the semigroup
of (Y↓, T0), and associated to it a self–similar recurrent extension of (Y↓, T0), say Ỹ↓. The absolutely
continuity relations in part (i)of Proposition 2 are inherited by the excursion measures n and n↓. More
precisely, for every Gt stopping time, T, we have that

n↓(FT , T < T0) = cγ n(FTY
γ
T , T < T0), FT ∈ GT , (11)

with n the excursion measure of Theorem 1 and

cγ =
Q\(J−(1−αθ))Γ(1− αθ)

Q\(J−(1−αθ+αγ))Γ(1− αθ + αγ)
.

To see this we just have to note that the measure Q↓\ obtained by h-transforming Q↓ via the invariant
function hθ−γ(x) = e(θ−γ)x, x ∈ R, is identical to the measure Q\ constructed in Section 2.

Furthermore, it is natural to hope that the conditioning on hitting 0 continuously should act just at
the end of the excursions. This let us guess that the meander processes associated to Ỹ and Ỹ↓ should
be related. This is indeed the case; a standard calculation shows that for every r > 0 the meander
processes of length r, (Ỹ ,M r) and (Ỹ↓,M↓,r) are identical in law conditionally on their values at time
r,

M r(·|Yr = x) = M↓,r(·|Yr = x), x > 0,

in the obvious notation.

Regardless of the value of α(θ − γ), we can always construct a pseudo–excursion measure n↓ as
an h–transform of n via the excessive function xγ , x > 0, and this pseudo–excursion measure is
still compatible with the minimal process (Y↓, T0). For us a pseudo–excursion measure has the same
properties as an excursion measure except that it is possible that it does not integrate 1− e−T0 . The
latter holds if and only if 1 ≤ α(θ − γ).

Remark 6. Observe that another consequence of Lemma 6 is that

lim
y→∞

yθ Q1(YT0− ≥ y) =
1− e−k + k

θm\
.

6 Examples

6.1 Further details for stable processes

In the Introduction we noted (X,P ) a real valued a–stable process with negative jumps and we assume
that X is not the negative of a subordinator. Since X is a Lévy process its law is determined by its
characteristic exponent which in turn can be described as

E(eiλX1) = exp{−c|λ|(1− iβsgn(λ) tan(aπ/2))} λ ∈ R, c > 0, β ∈ [−1, 1[

(the case β = 1 is excluded since we assume that X has some negative jumps). The case where X
does not have negative jumps enters in the setting considered in Chapter III. The Lévy measure of X
has the form

Π(dx) = C+x
−1−a1{x>0} + C−|x|−1−a1{x<0}dx,
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for some constants C+, C− ≥ 0 such that β = C+ − C−/C+ + C−. In a recent work, Caballero
and Chaumont [5] determined explicitly the characteristics of the Lévy process (ξ,Q) associated
via Lamperti’s transformation to the positive 1/a–self–similar Markov process (X0, P 0). The process
(ξ,Q) is a Lévy process whose characteristic exponent is given by

Ψ(λ) = k + idλ+
∫

R \{0}
(eiλx − 1− ixλ1{|x|<1})Π(dx), λ ∈ R,

where k = lims→0 s
−1P (T]−∞,0[ ≤ s) (this limit was calculated by Bingham [3]), d ∈ R is a drift

coefficient whose value is not important for us here and

Π(dx) = C+(ex(ex − 1)−1−a)1{x>0} + C−(ex|ex − 1|−1−a)1{x<0}dx,

see [5] for the details. We have to verify that this Lévy process satisfies the conditions (HI) in order
to apply our results to stable processes. Recall that to pass from the process X0 to the process ξ we
have to make the transformation

ξt = log(Xϕ−1(t)), with ϕ−1(t) the inverse of ϕ(t) =
∫ t

0
(X0

s )
−ads, t < T0.

Indeed, ξ is not arithmetic since the stable process is not. To verify that (HI-b) holds, we recall that
the function hρ(x) = xa(1−ρ)x ≥ 0 is invariant for (X0, P 0), see Silverstein [25] or Chaumont [10].
Since the measure P \ is the h–transform of P 0 via the invariant function hρ we have that for every
stopping time T in the filtration of X0 we have

P \x(T <∞) = x−a(1−ρ)P 0
x (Xa(1−ρ)

T 1{T<T0}).

In particular, for T = ϕ−1(t) with t > 0, which is a stopping time for X0, we have

P \x(1{ϕ−1(t)<∞}) = x−a(1−ρ)P 0
x (Xa(1−ρ)

ϕ−1(t)
1{ϕ−1(t)<T0}) = Q(ea(1−ρ)ξt1{t<ζ}) = Q(ea(1−ρ)ξt),

and the leftmost term is equal to 1 since Lamperti [21] Lemma 3.1 proved that whenever the self–
similar Markov process never hits 0 we have ϕ(∞) = ∞ a.s. independently of the starting point, which
is indeed the case under P \. According to Sato [24] Theorem 25.3, the condition (HI-c) is equivalent
to ∫

{x>1}
xea(1−ρ)x

ex

(ex − 1)1+a
dx <∞,

and that the latter holds is straightforward. We have thus proved that the conditions (HI) are satisfied
by the Lévy process associated to a stable process killed at ]−∞, 0[ with θ = a(1− ρ), and since the
self–similarity index is α = 1/a we have that 0 < αθ = 1− ρ < 1. In this particular case most of the
results in Section 2 are well known, see [10]. The recurrent extension of X0 is exactly the process X
reflected at its infimum (X − X,P ), since it is a strong Markov process that leaves 0 continuously
and its excursion measure n is the unique excursion measure compatible with the law P 0 such that
n(X0

0+ > 0) = 0 and n(1− e−T0) <∞.

We will denote by (X∗, P ∗) the dual stable process (X∗, P ∗) = (−X,P ), by (X∗,0, P ∗,0) the dual
stable process killed at ] − ∞, 0[ and by X

∗
t = sups≤tX∗, t ≥ 0. One can construct the dual stable

process conditioned to stay positive (X∗,↑, P ∗,↑) analytically, as an h–transform of P ∗,0 via the invariant
function xaρ, x ≥ 0, or pathwise, by using Tanaka’s method [26]; that is X∗,↑ is obtained by time–
reversing one by one the excursions from 0 of the process X reflected at its supremum (X∗−X∗, P ∗).
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For details on the latter construction see the recent work of Doney [12]. From Doney’s construction
it is easily deduced that the process

Rt =

{
(X∗ −X∗)(dt−(t−gt))− if 0 < gt ≤ dt <∞
0 otherwise,

where gt = sup{s < t : (X∗−X∗)s = 0} and dt = inf{s > t : (X∗−X∗s ) = 0}, has the same distribution
under P ∗0 as the process X∗,↑−X∗,↑ under P ∗,↑0+ , where X∗,↑

t
= inf{X∗,↑s , s ≥ t}, and P ∗,↑0+ is the limit in

the Skorohod sense of P ∗,↑x as x→ 0+, see [9] Theorem 6. It follows that under P ∗0 the Poisson point
process of excursions from 0 of R has the same law as that under P ∗,↑0+ of X∗,↑ − X∗,↑. Furthermore
the former is the image under % of the P.P.P. of excursions of X∗−X∗ under P ∗0 . Therefore, if n is the
excursion measure of X∗,↑ −X∗,↑, we have that the image under time reversal of n is n. We borrow
the following lemma from Chaumont [9] Theorem 5.

Lemma (Chaumont [9]). Let m = sup{t > 0 : X∗,↑t = infs≤tX
∗,↑
s }, and X∗,↑m the absolute minimum.

Under P ∗,↑x , x > 0, the process X∗,↑ reaches X∗,↑m once only and the processes (X∗,↑s −X∗,↑
0
, 0 ≤ s ≤ m)

and (X
∗,↑
s −X∗,↑

s
,m < s) are independent. Under P ∗,↑x , conditionally on X∗,↑m = y, 0 < y ≤ x, the law

of the former is P ∗,↓x−y and the latter has the same law as (X
∗,↑
s −X∗,↑

s
, s > 0) under P ∗,↑0+ .

Moreover, under n the excursion process is Markovian with semigroup

p∗,↓t (x, dy) =
p∗,0(x, dy)yaρ−1

xaρ−1
,

that is, the h–transform of (X0,∗, P ∗,0) via the excessive function h
′
1−ρ(x) = xaρ−1, x ≥ 0. We denote

by P ∗,↓ the law of this h–transform.

The law P ∗,↓ is that of a self–similar Markov process that hits 0 continuously and then dies at 0.
Thus, associated to n and P ∗,↓ there is a self–similar Markov process Z that is a recurrent extension

of (X∗,↓, T ∗,↓0 ); this is, indeed, the process Za(1−ρ) of Theorem 2 (iii). We denote its law by Q̃
∧
· . We

claim that under P ∗,↑x , x > 0, conditionally on X∗,↑m = y, 0 < y ≤ x, the process X∗,↑ −X∗,↑ has the
same law as Z started at x− y. By a monotone class argument, to see this it suffices to prove that for
all bounded measurable functionals F,G and all bounded measurable functions g we have that

P ∗,↑x (g(Xm)F (X∗,↑s −X∗,↑
s
, s ≤ m)G(X∗,↑s −X∗,↑

s
, s > m))

= P ∗,↑x (g(Xm) Q̃
∧
x−Xm

(F (Zs, s ≤ T0)G(Zs, s > T0))).

Indeed, due to the preceding lemma, the left-hand side of the above equation is equal to

P ∗,↑x (g(Xm)P ∗,↓x−Xm
(F (Xs, s ≤ T0))P

∗,↑
0+ (G(X∗,↑s −X∗,↑

s
, s > 0))),

and, by the Markov property applied at time T0, the right–hand side is equal to

P ∗,↑x (g(Xm) Q̃
∧
x−Xm

(F (Zs, s ≤ T0)) Q̃
∧
0 (G(Zs, s > 0))),

Using the fact that Z is a recurrent extension of X∗,↓ we have that for any z > 0

Q̃
∧
z (F (Zs, s ≤ T0)) = P ∗,↓z (F (Xs, s ≤ T0)),
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and, given that the processes Z and X∗,↑ −X∗,↑ can be recovered from their respective Poisson point
processes of excursions from 0, and that these have the same law since they have the same excursion
measure, we get that

Q̃
∧
0 (G(Zs, s > 0)) = P ∗,↑0+ (G(X∗,↑s −X∗,↑

s
, s > 0)),

and the claim follows.

Another consequence of the results of Silverstein [25] is that the function h
′
ρ(x) = xa(1−ρ)−1, x > 0

is excessive for the semigroup of (X0, P 0). Then the process (X↓, P ↓) which is the h–transform of
(X0, P 0) via the function h

′
ρ is a self–similar Markov process that hits 0 continuously, see Chau-

mont [10]. Thus according to Lamperti [21], the Lévy process (ξ↓,Q↓) associated to (X↓, P ↓) is a
Lévy process with infinite lifetime and that drifts to −∞, namely it is the Lévy process (ξ,Q) con-
ditioned to drift to −∞. To see this, we claim that the function e(a(1−ρ)−1)x, x ∈ R is invariant for
(ξ,Q). Indeed, by properties of h-transformations we have for the stopping time ϕ−1(1) that

P ↓x (ϕ−1(1) < T0) = P 0
x

(
X
a(1−ρ)−1
ϕ−1(1)

, ϕ−1(1) < T0

)
/h

′
ρ(x)

= Q(exp{(a(1− ρ)− 1)ξ1}, 1 < ζ)
= Q(exp{(a(1− ρ)− 1)ξ1}).

The leftmost term in the preceding equality is equal to P ↓x (1 < ϕ(T0)) = 1 since ϕ(T0) = ∞ P ↓x–a.s.
for any x > 0, see [21] Lemma 3.3. Therefore, the law

Q↓ |Dt = e(a(1−ρ)−1)ξt Q |Dt , t ≥ 0,

is that of a Lévy process with infinite lifetime. We also have that Q↓(eξ1) = 1, since 1 = a(1 − ρ) −
(a(1−ρ)−1), and as a consequence under Q↓ the Lévy process ξ↓ drifts to −∞. By arguments similar
to those given in Section 2 we verify that the self–similar Markov process associated to (ξ↓, P ↓) is
equivalent to (X↓, P ↓). Observe that, in general, a(1−ρ)−1 < 0 and thus γ = a(1−ρ)−1 is the only
candidate to satisfy the hypotheses (HI–d,e) under Q . We have already verified (HI–d) and using an
argument similar to that used to verify that (HI-c) holds we get that (HI-e) holds. In this case the
measure n↓ constructed in Section 5 is equal to the one constructed by Chaumont [8] section 2.4 and
plays an important rôle in obtaining pathwise transformations.

6.2 On the excursions that leave 0 by a jump and hit 0 continuously

Let Px, x ≥ 0, be the law of a self–similar Markov process X such that under Px, X hits 0 continuously
in a finite time:

Px(T0 <∞, XT0− = 0) = 1 for all x > 0,

and that 0 is a cemetery point. Assume that the Lévy process associated to X via Lamperti’s transfor-
mation satisfies the hypothesis (H2) in Chapter III. Then in Chapter III we proved that the recurrent
extension of (X,T0) that leaves and hits 0 continuously admits a weak dual whose excursion measure is
the image under time reversal of n. A similar result can be established for the recurrent extensions that
leave 0 by a jump. In order to give a precise statement we next recall and introduce some notation.

We will use the notation of Chapter III. We denote by P the law of the Lévy process ξ associated
to X. We assume henceforth that E(ξ−1 ) < ∞ and that the law P satisfies the hypotheses (H2) in
Chapter III. We denote θ the Cramér exponent of P and by P\ the h–transform of P via the invariant
function h(x) = eθx, x ∈ R . Let P̂\ be the law of ξ̂\ = −ξ\ under P\. The probability measures
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Px, P̂x,P\x and P̂\x are the laws of the self–similar Markov processes associated to the Lévy processes
with laws P, P̂,P\ and P̂\ respectively.

By the hypotheses (H2) it follows that the measure P̂\ has some finite exponential moments; in
fact

eψ̂
\(β) := P̂\(eβξ1) ≤ 1, β ∈ [0, θ],

where the inequality is an equality only for β = 0, θ. This implies that for any β ∈]0, θ[ the function
hβ(x) = eβx, x ∈ R, is excessive for the semi–group of the process ξ̂\. Thus the h–transform βQ,

of P̂\ via the excessive function hβ is a probability measure over the space of càdlàg trajectories
with a finite lifetime. Under βQ the canonical process is a Lévy process with finite lifetime since
βQ(t < ζ) = etψ̂

\(β), t > 0 and, conditionally on {t < ζ}, the increment ξt+s − ξt is independent of
(ξr, r ≤ t) and has the same law as ξs under βQ . Furthermore, we have constructed the measure βQ
in such way that it satisfies the hypotheses (HI). Indeed, under βQ the canonical process is not an
arithmetic process since by hypothesis it is not under P. For θβ = θ − β we have that

βQ(eθβξ1) = P̂\(eθξ1) = 1,

and
βQ(ξ+1 e

θβξ1) = E(ξ−1 ) <∞.

Let βQx be the law of the α–self–similar Markov process Yβ = (Yβ,t, t ≥ 0) associated to the Lévy
process with law βQ via Lamperti’s transformation. By Theorem 1 the process (Yβ, T0) admits a
unique self–similar recurrent extension Ỹβ = (Ỹβ,t,≥ 0) that leaves 0 continuously. We denote βn the
associated excursion measure.

By the results in Section III.3 we know that there exists a unique self–similar recurrent extension
Xβ = (Xβ,t, t ≥ 0) of (X,T0) that leaves 0 by a jump according to the jumping-in measure

νθ−β(dx) = dα,θ−βx
−(1+θ−β)dx, x > 0,

with dα,θ−β = (θ − β)/E(Iα(θ−β))Γ(1− α(θ − β)).

We now have all the elements required to establish the main result of this section, which is a
corollary to Theorems 1 & 2.

Proposition 3. Let β ∈]0, θ[.

(i) For any x > 0 and T stopping time for the filtration (Gt, t ≥ 0) we have that

βQx(FT , T < T0) = x−βP̂\x(FTXβ
T , T < T0), FT ∈ GT .

(ii) The process Xβ is in weak duality with the process Ỹβ w.r.t. x1/α−1−θ+βdx, x > 0.

(iii) The image under time reversal of the excursion measure βn is given by

ρ( βn(·)) = dα,θ−β

∫ ∞
0

x−1−θ+βEx(·)dx.

(iv) The excursion measure βn is such that for every t > 0

βn(Ft, t < T0) = (cβ)n̂(FtX
β
t , t < T0),

with n̂ the unique normalized excursion measure compatible with the self–similar Markov process
(X̂\, T0) such that n̂(X0+ > 0) = 0, and cβ a normalizing constant.
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Proof. The proof of (i) is a straightforward consequence of the fact that the measure βQ is an h-
transform of the measure P̂\. The statements in (ii) and (iii) are consequences of the following claim:

the measure P is equal to the measure
β̂
Q\. To see this recall that the former is the dual of the measure

β
Q\ which is in turn the h–transform of βQ via the invariant function hθ−β = e(θ−β)x, x ∈ R . Since

under the measures P and
β̂
Q\ the canonical process is a Lévy process with infinite lifetime, all that

we have to do to prove the claimed fact is to verify that both have the same 1-dimensional marginals.
This is proved in the following sequence of equalities: for every t > 0, λ ∈ R,

β̂
Q\(eiλξt) =

β
Q\(e−iλξt) = βQ(eiλξte(θ−β)ξt , t < ζ) = P̂\(e−iλξteθξt) = P(eiλξt).

Therefore, the laws Px and
β̂Q\

x are equal for all x > 0, and the self–similar recurrent extension Xβ is
equal to the process Zθ−β in Theorem 2 (iii). The statement in (ii) and (iii) follows from Theorem 2.

To prove (iv) recall from Theorem 1 that for every t > 0

βn(At, t < T0) = (aα,θβ
)−1 βQ\

0+(AtY
−θ+β
t ), At ∈ Gt,

with aα,θβ
= αQ\(J−(1−(θ−β)))Γ(1−αθ+αβ)/m\, m\ = Q\(ξ1). On the other hand, since the measure

β
Q\ is equal to P̂ we have that

βQ\
x is equal to P̂x for all x > 0. Which implies

βQ\
0+ = P̂0+ over G.

The result is then obtained using the fact that the excursion measure n̂ is such that for every t > 0

n̂(At, t < T0) = (âα,θ)−1Ê0+(At, X−θt ), At ∈ Gt,

with âα,θ = αE(I−(1−αθ))Γ(1−αθ)/m, m = −E(ξ1). The constant cβ is determined by cβ = âα,θ/aα,θβ
.

As a final comment, observe that the measure Q↓ of section 5 satisfies the assumptions (H2) of
Chapter III and we can therefore apply the construction and results obtained in that section to study
the self–similar Markov process (X↓,Q↓) associated to Q↓ . In particular, in the a-stable process setting
for a ∈]1, 2[, if Q↓

· is the law of the process (X0, P 0) conditioned to hit 0 continuously we have that the
hypotheses (H2) are satisfied for θ = 1, Then, for β = 1−aρ, we have that the process Xβ corresponds
to the stable process conditioned to stay positive and reflected at its future infimum under the law
P and the process Yβ corresponds to the stable process reflected as its infimum under P ∗. The latter
is equal to the stable process reflected at its supremum under the law P. We leave the details to the
interested reader. The restriction a ∈]1, 2[ is just used to ensure that 0 < (1/a)θ = 1/a < 1 and thus
the existence of the excursion measure n̂ in (iv) in Proposition 3. The same result holds without the
condition a ∈]1, 2[, but in (iv) we will have a pseudo excursion measure.

6.3 The case where the process Y has increasing paths

Assume that the Lévy process ξ′ of section 2 has increasing paths, that is ξ′ is a subordinator. It is
well known that the law of a subordinator has negative exponential moments:

]−∞, 0[⊆ C := {λ ∈ R : Q′(eλξ1) <∞}.

In this case, the Laplace exponent ψ of ξ′ is given by

ψ(λ) = dλ+
∫ ∞

0
(eλx − 1)Π(dx).
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We assume that there is a θ ∈ Ĉ∩]0,∞[6= ∅ such that Q′(ξ1eθξ1) < ∞ and let Q be the law of the
subordinator ξ′ killed at rate k = ψ(θ). Observe that instead of taking ∞ as cemetery point for the
subordinator as usually, we are taking a point ∆ such that e∆ = 0. Therefore, the α–self–similar
Markov process Y associated to ξ is a process with a.s. increasing paths that suddenly jumps to 0 at
some finite time and then dies. By construction, the law Q satisfies the hypotheses (HI) for θ̂ and
therefore we can construct a self–similar recurrent extension Ỹ of Y that leaves 0 continuously a.s.
By time reversal the dual process Ŷ \ is the self–similar Markov process associated to the negative
of a subordinator whose Laplace exponent is easily derived from ψ. The recurrent extension of the
self–similar Markov process Ŷ \ is that constructed in Example III.1 and is in weak duality with Ỹ .

Observe that in this case the process ξ\ is a subordinator but it is not equal to ξ′. In general, even
if the Lévy process ξ′ drifts to ∞, the process ξ\ is not equal to ξ′.
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functionals of Lévy processes. Ann. Fac. Sci. Toulouse Math., 11(1):19–32, 2002.

[3] N. H. Bingham. Maxima of sums of random variables and suprema of stable processes. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete, 26:273–296, 1973.

[4] R. M. Blumenthal. Excursions of Markov processes. Probability and its Applications. Birkhäuser
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