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Matrices

An m× n matrix A is a collection of scalar values arranged in a rectangle of m
rows and n columns.

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn


The i, j element of matrix A can be written Aij or more conventionally aij .
Where more clarity is required, one may write [A]ij (for example

[
A−1

]
ij

).

Matrix addition
For two matrix A and B of the same size,

[A + B]ij = [A]ij + [B]ij



Matrix multiplication

For an l by n matrix A and an n by m matrix B, the product AB is the l by m
matrix with elements

[AB]ik =

n∑
j=1

[A]ij [B]jk ; i = 1, . . . , l k = 1, . . . ,m .

In general BA 6= AB. When BA = AB we say they A and B commute. a11 a12 a13
a21 a22 a23
a31 a32 a33

 b11 b12
b21 b22
b31 b32


=

 a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32
a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32





Identity

The matrix I is the identity matrix, necessarily square, with 1’s on the diagonal
and 0’s everywhere else. For clarity we may also write Im for a square m×m
identity matrix. Then for an m× n matrix A, ImA = AIn = A. The identity
matrix has elements [I]ij = δij given by the Kronecker delta:

δij ≡
{

1 i = j
0 i 6= j

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1





Transpose

The transpose BT of the n by m matrix B is the m by n matrix D with
components[

BT
]
kj

= Bjk ; k = 1, . . . ,m j = 1, . . . , n .

(
BT
)T

= B and (AB)
T
= BTAT. If the shapes of the matrices A,B and C are

such that it makes sense to calculate the product ABC, then

(ABC)
T
= CTBTAT



Vector algebra

Vectors
Let x denote the n-dimensional column vector with components

x1
x2
...
xn


A vector can be considered a n× 1 matrix.

Addition

x + y =


x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn





Scalar product

w · x =

n∑
i=1

wixi = wTx

The length of a vector is denoted |x|, the squared length is given by

|x|2 = xTx = x2 = x21 + x22 + · · ·+ x2n

A unit vector x has xTx = 1. The scalar product has a natural geometric
interpretation as:

w · x = |w| |x| cos(θ)

where θ is the angle between the two vectors. Thus if the lengths of two vectors are
fixed their inner product is largest when θ = 0, whereupon one vector is a constant
multiple of the other. If the scalar product xTy = 0, then x and y are orthogonal.



Linear dependence

A set of vectors x1, . . . ,xn is linearly dependent if there exists a vector xj that can
be expressed as a linear combination of the other vectors. If the only solution to

n∑
i=1

αix
i = 0

is for all αi = 0, i = 1, . . . , n, the vectors x1, . . . ,xn are linearly independent.



Projections

Suppose we wish to resolve the vector a into its components along the orthogonal
directions specified by the unit vectors e and e∗. That is |e| = |e|∗ = 1 and
e · e∗ = 0. We are required to find the scalar values α and β such that

a = αe + βe∗

a · e = αe · e + βe∗ · e, a · e∗ = αe · e∗ + βe∗ · e∗

From orthogonality and unit lengths of the vectors e and e∗, this becomes

a · e = α, a · e∗ = β

Hence

a = (a · e) e + (a · e∗) e∗

The projection of a vector a onto a direction specified by general f is a·f
|f |2 f .



Determinant
For a square matrix A, the determinant is the volume of the transformation of the
matrix A (up to a sign change). That is, we take a hypercube of unit volume and
map each vertex under the transformation. The volume of the resulting object is
defined as the determinant. Writing [A]ij = aij ,

det

(
a11 a12
a21 a22

)
= a11a22 − a21a12

The determinant in the (3× 3) case has the form

a11det

(
a22 a23
a32 a33

)
− a12det

(
a21 a23
a31 a33

)
+ a13det

(
a21 a22
a31 a32

)
More generally, the determinant can be computed recursively as an expansion
along the top row of determinants of reduced matrices.
The absolute value of the determinant is the volume of the transformation.

det
(
AT
)
= det (A)

For square matrices A and B of equal dimensions,

det (AB) = det (A) det (B) , det (I) = 1⇒ det
(
A−1

)
= 1/det (A)



Matrix inversion
For a square matrix A, its inverse satisfies

A−1A = I = AA−1

It is not always possible to find a matrix A−1 such that A−1A = I, in which case
A singular. Geometrically, singular matrices correspond to projections: if we
transform each of the vertices v of a binary hypercube using Av, the volume of
the transformed hypercube is zero (A has determinant zero). Given a vector y and
a singular transformation, A, one cannot uniquely identify a vector x for which
y = Ax. Provided the inverses exist

(AB)
−1

= B−1A−1

Pseudo inverse
For a non-square matrix A such that AAT is invertible,

A† = AT
(
AAT

)−1
satisfies AA† = I.



Solving Linear Systems

Problem
Given square N ×N matrix A and vector b, find the vector x that satisfies

Ax = b

Solution
Algebraically, we have the inverse:

x = A−1b

In practice, we solve solve for x numerically using Gaussian Elimination – more
stable numerically.

Complexity
Solving a linear system is O

(
N3
)

– can be very expensive for large N .
Approximate methods include conjugate gradient and related approaches.



Matrix rank

For an m× n matrix X with n columns, each written as an m-vector:

X =
[
x1, . . . ,xn

]
the rank of X is the maximum number of linearly independent columns (or
equivalently rows).

Full rank
An n× n square matrix is full rank if the rank is n, in which case the matrix is
must be non-singular. Otherwise the matrix is reduced rank and is singular.



Trace and Det

trace (A) =
∑
i

Aii =
∑
i

λi

where λi are the eigenvalues of A.

det (A) =

n∏
i=1

λi

A matrix is singular if it has a zero eigenvalue.

Trace-Log formula
For a positive definite matrix A,

trace (logA) ≡ log det (A)

The above logarithm of a matrix is not the element-wise logarithm. In general for
an analytic function f(x), f(M) is defined via the power-series expansion of the
function. On the right, since det (A) is a scalar, the logarithm is the standard
logarithm of a scalar. (A real matrix has a real logarithm if and only if it is
invertible and each Jordan block belonging to a nonnegative eigenvalue occurs an
even number of times. Also see pp. 558-561in the book Matrix Computations by
Golub and Van Loan.)



Orthogonal matrix

A square matrix A is orthogonal if

AAT = I = ATA

From the properties of the determinant, we see therefore that an orthogonal matrix
has determinant ±1 and hence corresponds to a volume preserving transformation.



Linear transformations

Cartesian coordinate system
Define ui to be the vector with zeros everywhere expect for the ith entry, then a
vector can be expressed as x =

∑
i xiui.

Linear transformation
A linear transformation of x is given by matrix multiplication by some matrix A

Ax =
∑
i

xiAui =
∑
i

xiai

where ai is the ith column of A.



Eigenvalues and eigenvectors

For an n× n square matrix A, e is an eigenvector of A with eigenvalue λ if

Ae = λe

For an (n× n) dimensional matrix, there are (including repetitions) n eigenvalues,
each with a corresponding eigenvector. We can write

(A− λI)︸ ︷︷ ︸
B

e = 0

If B has an inverse, then the only solution is e = B−10 = 0, which trivially
satisfies the eigen-equation. For any non-trivial solution we therefore need B to be
non-invertible. Hence λ is an eigenvalue of A if

det (A− λI) = 0

It may be that for an eigenvalue λ the eigenvector is not unique and there is a
space of corresponding vectors.



Spectral decomposition
A real symmetric matrix N ×N A has an eigen-decomposition

A =

n∑
i=1

λieie
T
i

where λi is the eigenvalue of eigenvector ei and the eigenvectors form an
orthogonal set,(

ei
)T

ej = δij
(
ei
)T

ei

In matrix notation

A = EΛET

where E is the orthogonal matrix of eigenvectors and Λ the corresponding
diagonal eigenvalue matrix. More generally, for a square non-symmetric
‘diagonalisable’ A we can write

A = EΛE−1

Computational Complexity
It generally takes O

(
N3
)

time to compute the eigen-decomposition.



Singular Value Decomposition

The SVD decomposition of a n× p matrix X is

X = USVT

where dimU = n× n with UTU = In. Also dimV = p× p with VTV = Ip. The
matrix S has dimS = n× p with zeros everywhere except on the diagonal entries.
The singular values are the diagonal entries [S]ii and are positive. The singular
values are ordered so that the upper left diagonal element of S contains the largest
singular value.

Computational Complexity

It generally takes O
(
max (n, p) (min (n, p))

2
)

time to compute the

SVD-decomposition.



Positive definite matrix

A symmetric matrix A with the property that xTAx ≥ 0 for any vector x is called
positive semidefinite. A symmetric matrix A, with the property that xTAx > 0 for
any vector x 6= 0 is called positive definite. A positive definite matrix has full rank
and is thus invertible.

Eigen-decomposition
Using the eigen-decomposition of A,

xTAx =
∑
i

λix
Tei(ei)Tx =

∑
i

λi
(
xTei

)2
which is greater than zero if and only if all the eigenvalues are positive. Hence A is
positive definite if and only if all its eigenvalues are positive.



Multivariate Calculus

Partial derivative
Consider a function of n variables, f(x1, x2, . . . , xn) or f(x). The partial
derivative of f w.r.t. xi is defined as the following limit (when it exists)

∂f

∂xi
= lim
h→0

f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x)
h

Gradient vector
For function f the gradient is denoted ∇f or g:

∇f(x) ≡ g(x) ≡


∂f
∂x1

...
∂f
∂xn





Interpreting the gradient vector

Consider a function f(x) that depends on a vector x. We are interested in how the
function changes when the vector x changes by a small amount : x→ x + δ,
where δ is a vector whose length is very small:

f (x + δ) = f(x) +
∑
i

δi
∂f

∂xi
+O

(
δ2
)

We can interpret the summation above as the scalar product between the vector
∇f with components [∇f ]i = ∂f

∂xi
and δ.

f (x + δ) = f(x) + (∇f)Tδ +O
(
δ2
)



Interpreting the Gradient

x1

x2

f(x)

Figure: Interpreting the gradient. The ellipses are
contours of constant function value, f = const. At
any point x, the gradient vector ∇f(x) points along
the direction of maximal increase of the function.

The gradient points along the direction in which the function increases most
rapidly. Why? Consider a direction p̂ (a unit length vector). Then a displacement,
δ units along this direction changes the function value to

f(x + δp̂) ≈ f(x) + δ∇f(x) · p̂

The direction p̂ for which the function has the largest change is that which
maximises the overlap

∇f(x) · p̂ = |∇f(x)||p̂| cos θ = |∇f(x)| cos θ

where θ is the angle between p̂ and ∇f(x). The overlap is maximised when θ = 0,
giving p̂ = ∇f(x)/|∇f(x)|. Hence, the direction along which the function
changes the most rapidly is along ∇f(x).



Higher derivatives
The ‘second-derivative’ of an n-variable function is defined by

∂

∂xi

(
∂f

∂xj

)
i = 1, . . . , n; j = 1, . . . , n

which is usually written

∂2f

∂xi∂xj
, i 6= j

∂2f

∂xi2
, i = j

If the partial derivatives ∂f/∂xi, ∂f/∂xj and ∂2f/∂xi∂xj are continuous, then
∂2f/∂xi∂xj exists and

∂2f/∂xi∂xj = ∂2f/∂xj∂xi .

This is also denoted by ∇∇f . These n2 second partial derivatives are represented
by a square, symmetric matrix called the Hessian matrix of f(x).

Hf (x) =


∂2f
∂x1

2 . . . ∂2f
∂x1∂xn

...
...

∂2f
∂x1∂xn

. . . ∂2f
∂xn

2





Chain rule

Let each xj be parameterized by u1, . . . , um, i.e. xj = xj(u1, . . . , um).

∂f

∂uα
=

n∑
j=1

∂f

∂xj

∂xj
∂uα

or in vector notation

∂

∂uα
f(x(u)) = ∇fT(x(u))

∂x(u)

∂uα



Derivatives with vectors

The derivative of a vector y =

 y1
...
yn

, by a scalar x is written as:

∂y

∂x
=


∂y1
∂x
...

∂yn
∂x

 .

The derivative of a scalar x by a vector y is ∇x(y) and ∇x(y) · n is the
directional derivative of x in the n direction, where ‖n‖ = 1.



Derivatives with vectors (contd.)

The derivative of a vector function y =

 y1
...
ym

, wrt. an independent vector

x =

 x1
...
xn

 is written as:

∂y

∂x
=


∂y1
∂x1

. . . ∂y1
∂xn

...
...

∂ym
∂x1

. . . ∂ym
∂xn

 .



Matrix calculus

The derivative of a matrix function Y by a scalar x is known as the tangent matrix
and is given (in numerator layout notation) by

∂Y

∂x
=


∂y11
∂x . . . ∂y1n

∂x
...

. . .
...

∂ym1

∂x . . . ∂ymn

∂x

 .

The derivative of a scalar y function of a matrix X of independent variables, with
respect to the matrix X, is given by

∂y

∂X
=


∂y
∂x11

. . . ∂y
∂x1n

...
. . .

...
∂y
∂xm1

. . . ∂y
∂xmn

 .



Matrix calculus (contd.)

For matrices A and B

∂

∂A
trace (AB) ≡ BT

∂ log det (A) = ∂trace (logA) = trace
(
A−1∂A

)
So that

∂

∂A
log det (A) = A−T

For an invertible matrix A,

∂A−1 ≡ −A−T∂AA−1



Example:

Let A and B be matrices of m× n and n×m elements, respectively. Let’s
compute ∂

∂A trace (AB).

y = trace (AB) =

m∑
i=1

n∑
k=1

AikBki

∂

∂Ars
trace (AB) =

m∑
i=1

n∑
k=1

∂

∂Ars
AikBki =

m∑
i=1

n∑
k=1

δirδksBki = Bsr

∂y

∂A
=


∂y
∂A11

. . . ∂y
∂A1n

...
. . .

...
∂y

∂Am1
. . . ∂y

∂Amn

 =

 B11 . . . Bn1
...

. . .
...

B1m . . . Bnm

 = BT



Einstenin’s notation

According to this convention, when an index variable appears twice in a single term
it implies summation of that term over all the values of the index. Fore example:

Cij =

n∑
k=1

AikBkj ,

can be written as
Cij = AikBki.



Homework

Show that

∂

∂A
log det (A) = A−T.

Solution.:

∂

∂Ars
log det (A) =

1

det (A)

∂

∂Ars

n∑
i=1

(−1)i+jAijMij =
1

det (A)
(−1)r+sMrs.

where Mrs is the cofactor of Ars. But Csr = (−1)r+sMrs, where C = adj
(
AT
)
.

Namely, (adj (A))sr = (−1)r+sMrs. Therefore we have:

∂

∂Ars
log det (A) =

adj
(
AT
)

det (A)
= A−T.



Numerical issues: rounding error

Often in machine learning we have a large number of terms to sum, for
example when computing the log likelihood in for a large number of
datapoints.

It’s good to be aware of potential numerical limitations and ways to improve
accuracy, should this be a problem. Double floats have a relative error of
around 1× 10−16.

Operations that are mathematical identities may not remain so. For example∑
n

xni x
n
j

should give rise to a symmetric matrix. However, this symmetry can be lost
due to roundoff.

In general, it’s worth checking key points in your code for such issues.



Numerical issues: rounding error

Consider

S =

N∑
i=1

xi

If xi cannot be represented exactly by your machine, round-off error will
potentially accumulate in computing S.

Let y be an ‘approximation’ to each xi, then

S =

N∑
i=1

(xi − y + y) = Ny +

N∑
i=1

(xi − y)

If each xi is close to y, then the term
∑N
i=1(xi − y) is small and the sum is

dominated by the numerically more accurate term Ny.
See testacc.m for an example.



logsumexp
It’s common in ML to come across expression such as

S = exp(a) + exp(b)

for large (in absolute value) a or b. If a = 1000, Matlab will return ∞ (0 for
a = −1000).
It’s not sufficient to simply compute the log:

logS = log (exp(a) + exp(b))

since this requires the exponentiation still of each term.
Let m = max (a, b).

logS = m+ log (exp(a−m) + exp(b−m))

Let’s say that m = a, then

logS = a+ log (1 + exp(b− a))
Since a > b then exp(b− a) < 1 and log (1 + exp(b− a)) < log 2. We can
compute logS more accurately this way.
More generally, we define the logsumexp function

logsumexp(x) = m+
∑
i

log

(
N∑
i=1

exp(xi −m)

)
, m = max (x1, . . . , xN )



logsumexp: example

In a classification problem of a 100 dimensional vector x,

p(c = i|x) = e−(x−mi)
2∑

j e
−(x−mj)

2

A naive implementation of this is likely to lead to 0
0 and a numerical error.

log p(c = i|x) = − (x−mi)
2 − logsumexp(y)

where

yj = − (x−mj)
2


