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Probability space (Ω,F , P )

A probability space consists of an arbitrary set Ω called sample space, a σ-algebra
F , and a probability measure P .



σ-algebra

A collection F of subsets of Ω is a σ-algebra if the following conditions are true:

1. Ω ∈ F

2. If A ∈ F , then Ac ∈ F .

3. If A1, A2, · · · ∈ F , then
⋃∞
n=1An ∈ F

Namely, a σ-algebra is a nonempty collection of subsets of Ω that is closed under
complement and infinite unions. These properties guarantee that the collection is
closed under union, intersection, complement, difference, symmetric difference, and
so on. The elements of F are called events.

Example: Borel algebras in R.



Borel algebra

Definition
B(R) = σ{(a, b) ⊆ R : a ≤ b}.

The elements of B(R) are calle Borel sets.

For any real numbers a ≤ b, the intervals [a, b], (−∞, b), [a, b), (a, b] and {a},
are all elements of B(R).



Probability measure

Let (Ω,F ) a measurable space. A probability measure is a function P : F → [0, 1]
that satisfies:

1. P (Ω) = 1.

2. If P (A) ≥ 0, for all Ac ∈ F .

3. If A1, A2, · · · ∈ F , are jointly disjoint, that is, Am ∩An = ∅ for m 6= n, then
P (
⋃∞
n=1An) =

∑∞
n=1 P (An).



Random variable

A real random variable is a function X : Ω→ R such that for any Borel set B, the
set X−1B is an element of F .



Rules of probability discrete random variables
p(x = x) : the probability of variable x being in state x.

p(x = x) =

{
1 we are certain x is in state x
0 we are certain x is not in state x

Values between 0 and 1 represent the degree of certainty of state occupancy.

domain
dom(x) denotes the states x can take. For example, dom(c) = {heads, tails}.
When summing over a variable

∑
x f(x), the interpretation is that all states of x

are included, i.e.
∑
x f(x) ≡

∑
s∈dom(x) f(x = s).

distribution
Given a variable, x, its domain dom(x) and a full specification of the probability
values for each of the variable states, p(x), we have a distribution for x.

normalisation
The summation of the probability over all the states is 1:∑

x∈dom(x)

p(x = x) = 1

We will usually more conveniently write
∑
x p(x) = 1.



Operations

AND
Use the shorthand p(x, y) ≡ p(x ∩ y) for p(x and y). Note that p(y, x) = p(x, y).

Marginalisation
Given a joint distr. p(x, y) the marginal distr. of x is defined by

p(x) =
∑
y

p(x, y)

More generally,

p(x1, . . . , xi−1, xi+1, . . . , xn) =
∑
xi

p(x1, . . . , xn)



Conditional Probability and Bayes’ Rule

The probability of event x conditioned on knowing event y (or more shortly, the
probability of x given y) is defined as

p(x|y) ≡ p(x, y)

p(y)
=
p(y|x)p(x)

p(y)
(Bayes’ rule)

Throwing darts

p(region 5|not region 20) =
p(region 5, not region 20)

p(not region 20)

=
p(region 5)

p(not region 20)
=

1/20

19/20
=

1

19

Interpretation
p(A = a|B = b) should not be interpreted as ‘Given the event B = b has occurred,
p(A = a|B = b) is the probability of the event A = a occurring’. The correct
interpretation should be ‘p(A = a|B = b) is the probability of A being in state a
under the constraint that B is in state b’.



Probability tables

The a priori probability that a randomly selected Great British person would live in
England, Scotland or Wales, is 0.88, 0.08 and 0.04 respectively.

We can write this as a vector (or probability table) : p(Cnt = E)
p(Cnt = S)
p(Cnt = W)

 =

 0.88
0.08
0.04


whose component values sum to 1.

The ordering of the components in this vector is arbitrary, as long as it is
consistently applied.



Probability tables

We assume that only three Mother Tongue languages exist : English (Eng),
Scottish (Scot) and Welsh (Wel), with conditional probabilities given the country
of residence, England (E), Scotland (S) and Wales (W). Using the state ordering:

MT = [Eng,Scot,Wel]; Cnt = [E,S,W]

we write a (fictitious) conditional probability table

p(MT |Cnt) =

 0.95 0.7 0.6
0.04 0.3 0.0
0.01 0.0 0.4





Probability tables

The distribution p(Cnt,MT ) = p(MT |Cnt)p(Cnt) can be written as a 3× 3
matrix with (say) rows indexed by country and columns indexed by Mother Tongue: 0.95× 0.88 0.7× 0.08 0.6× 0.04

0.04× 0.88 0.3× 0.08 0.0× 0.04
0.01× 0.88 0.0× 0.08 0.4× 0.04

 =

 0.836 0.056 0.024
0.0352 0.024 0
0.0088 0 0.016


By summing a column, we have the marginal

p(Cnt) =

 0.88
0.08
0.04


Summing the rows gives the marginal

p(MT ) =

 0.916
0.0592
0.0248





Probability tables

Large numbers of variables
For joint distributions over a larger number of variables, xi, i = 1, . . . , D, with
each variable xi taking Ki states, the table describing the joint distribution is an
array with

∏D
i=1Ki entries.

Explicitly storing tables therefore requires space exponential in the number of
variables, which rapidly becomes impractical for a large number of variables.

Indexing
A probability distribution assigns a value to each of the joint states of the
variables. For this reason, p(T, J,R, S) is considered equivalent to p(J, S,R, T ) (or
any such reordering of the variables), since in each case the joint setting of the
variables is simply a different index to the same probability.

One should be careful not to confuse the use of this indexing type notation with
functions f(x, y) which are in general dependent on the variable order.



Inspector Clouseau

Inspector Clouseau arrives at the scene of a crime. The Butler (B) and Maid (M)
are his main suspects. The inspector has a prior belief of 0.6 that the Butler is the
murderer, and a prior belief of 0.2 that the Maid is the murderer. These
probabilities are independent in the sense that p(B,M) = p(B)p(M). (It is
possible that both the Butler and the Maid murdered the victim or neither). The
inspector’s prior criminal knowledge can be formulated mathematically as follows:

dom(B) = dom(M) = {murderer, not murderer}

dom(K) = {knife used, knife not used}
p(B = murderer) = 0.6, p(M = murderer) = 0.2

p(knife used|B = not murderer, M = not murderer) = 0.3
p(knife used|B = not murderer, M = murderer) = 0.2
p(knife used|B = murderer, M = not murderer) = 0.6
p(knife used|B = murderer, M = murderer) = 0.1

The victim lies dead in the room and the inspector quickly finds the murder
weapon, a Knife (K). What is the probability that the Butler is the murderer?
(Remember that it might be that neither is the murderer).



Inspector Clouseau

Using b for the two states of B and m for the two states of M ,

p(B|K) =
∑
m

p(B,m|K) =
∑
m

p(B,m,K)

p(K)
=

p(B)
∑
m p(K|B,m)p(m)∑

b p(b)
∑
m p(K|b,m)p(m)

Plugging in the values we have

p(B = murderer|knife used) =
6
10

(
2
10
× 1

10
+ 8

10
× 6

10

)
6
10

(
2
10
× 1

10
+ 8

10
× 6

10

)
+ 4

10

(
2
10
× 2

10
+ 8

10
× 3

10

)
=

300

412
≈ 0.73

Hence knowing that the knife was the murder weapon strengthens our belief that
the butler did it.

Exercise: compute the probability that the Butler and not the Maid is the
murderer.



Inspector Clouseau

The role of p(knife used) in the Inspector Clouseau example can cause some
confusion. In the above,

p(knife used) =
∑
b

p(b)
∑
m

p(knife used|b,m)p(m)

is computed to be 0.456. But surely, p(knife used) = 1, since this is given in the
question!

Note that the quantity p(knife used) relates to the prior probability the model
assigns to the knife being used (in the absence of any other information). If we
know that the knife is used, then the posterior is

p(knife used|knife used) =
p(knife used, knife used)

p(knife used)
=
p(knife used)

p(knife used)
= 1

which, naturally, must be the case.



Independence
Variables x and y are independent if knowing one event gives no extra information
about the other event. Mathematically, this is expressed by

p(x, y) = p(x)p(y)

Independence of x and y is equivalent to

p(x|y) = p(x)⇔ p(y|x) = p(y)

If p(x|y) = p(x) for all states of x and y, then the variables x and y are said to be
independent. We write then x⊥⊥y.

interpretation
Note that x⊥⊥y doesn’t mean that, given y, we have no information about x. It
means the only information we have about x is contained in p(x).

factorisation
If

p(x, y) = kf(x)g(y)

for some constant k, and positive functions f(·) and g(·) then x and y are
independent.



Conditional Independence

X ⊥⊥Y|Z
denotes that the two sets of variables X and Y are independent of each other
given the state of the set of variables Z. This means that

p(X ,Y|Z) = p(X|Z)p(Y|Z) and p(X|Y,Z) = p(X|Z)

for all states of X ,Y,Z. In case the conditioning set is empty we may also write
X ⊥⊥Y for X ⊥⊥Y|∅, in which case X is (unconditionally) independent of Y.

Conditional independence does not imply marginal independence

p(x, y) =
∑
z

p(x|z)p(y|z)︸ ︷︷ ︸
cond. indep.

p(z) 6=
∑
z

p(x|z)p(z)︸ ︷︷ ︸
p(x)

∑
z

p(y|z)p(z)︸ ︷︷ ︸
p(y)

Conditional dependence
If X and Y are not conditionally independent, they are conditionally dependent.
This is written

X>>Y|Z
Similarly X>>Y|∅ can be written as X>>Y.



Conditional Independence example

Based on a survey of households in which the husband and wife each own a car, it
is found that:

wife’s car type⊥⊥husband’s car type| family income

There are 4 car types, the first two being ‘cheap’ and the last two being
‘expensive’. Using w for the wife’s car type and h for the husband’s:

p(w|inc = low) =


0.7
0.3
0
0

 , p(w|inc = high) =


0.2
0.1
0.4
0.3



p(h|inc = low) =


0.2
0.8
0
0

 , p(h|inc = high) =


0
0

0.3
0.7


p(inc = low) = 0.8



Conditional Independence example

Then the marginal distribution p(w, h) is

p(w, h) =
∑
inc

p(w|inc)p(h|inc)p(inc)

giving

p(w, h) =


0.126 0.504 0.006 0.014
0.054 0.216 0.003 0.007

0 0 0.012 0.028
0 0 0.009 0.021


From this we can find the marginals and calculate

p(w)p(h) =


0.117 0.468 0.0195 0.0455
0.0504 0.2016 0.0084 0.0196
0.0072 0.0288 0.0012 0.0028
0.0054 0.0216 0.0009 0.0021


This shows that whilst w⊥⊥h| inc, it is not true that w⊥⊥h. For example, even if
we don’t know the family income, if we know that the husband has a cheap car
then his wife must also have a cheap car – these variables are therefore dependent.



Scientific Inference

Much of science deals with problems of the form : tell me something about the
variable θ given that I have observed data D and have some knowledge of the
underlying data generating mechanism. Our interest is then the quantity

p(θ|D) =
p(D|θ)p(θ)
p(D)

=
p(D|θ)p(θ)∫
θ
p(D|θ)p(θ)

This shows how from a forward or generative model p(D|θ) of the dataset, and
coupled with a prior belief p(θ) about which variable values are appropriate, we can
infer the posterior distribution p(θ|D) of the variable in light of the observed data.

Generative models in science
This use of a generative model sits well with physical models of the world which
typically postulate how to generate observed phenomena, assuming we know the
model. For example, one might postulate how to generate a time-series of
displacements for a swinging pendulum but with unknown mass, length and
damping constant. Using this generative model, and given only the displacements,
we could infer the unknown physical properties of the pendulum, such as its mass,
length and friction damping constant.



Prior, Likelihood and Posterior

For data D and variable θ, Bayes’ rule tells us how to update our prior beliefs
about the variable θ in light of the data to a posterior belief:

p(θ|D)︸ ︷︷ ︸
posterior

=

p(D|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

p(D)︸ ︷︷ ︸
evidence

The evidence is also called the marginal likelihood.

The term likelihood is used for the probability that a model generates observed
data.



Prior, Likelihood and Posterior
More fully, if we condition on the model M , we have

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)

where we see the role of the likelihood p(D|θ,M) and marginal likelihood p(D|M).
The marginal likelihood is also called the model likelihood.

The MAP assignment
The Most probable A Posteriori (MAP) setting is that which maximises the
posterior,

θ∗ = argmax
θ

p(θ|D,M) = argmax
θ

p(θ,D|M)

The Max Likelihood assignment
When p(θ|M) = const.,

θ∗ = argmax
θ

p(θ,D|M) = argmax
θ

p(D|θ,M)



Homework

Problems 1.6, 1.7, 1.9, 1.18, and 1.19.


