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Graphical Models

GMs are graph based representations of various factorization assumptions of
distributions. These factorizations are typically equivalent to independence
statements amongst (sets of) variables in the distribution.

Belief Network Each factor is a conditional distribution. Generative models, AI,
statistics. Corresponds to a DAG.

Markov Network Each factor corresponds to a potential (non negative function).
Related to the strength of relationship between variables, but not
directly related to dependence. Useful for collective phenomena
such as image processing. Corresponds to an undirected graph.

Chain Graph A marriage of BNs and MNs. Contains both directed and
undirected links.

Factor Graph A barebones representation of the factorization of a distribution.
Often used for efficient computation and deriving message passing
algorithms.

The GM zoo There are many more kinds of GMs, each useful in its own right.
We’ll touch on some more when we consider inference.



Markov Network
Clique: Fully connected subset of nodes.

Maximal Clique: Clique which is not a subset of a larger clique.

A Markov Network is an undirected graph in which
there is a potential (non-negative function) ψ defined
on each maximal clique.

The joint distribution is proportional to the product of
all clique potentials.
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p(A,B,C,D,E) =
1

Z
ψ(A,C)ψ(C,D)ψ(B,C,E)

Z =
∑

A,B,C,D,E

ψ(A,C)ψ(C,D)ψ(B,C,E)

Z is the normalization factor (partition function). The presence of this constant is
one of the major limitations of Markov Networks. Evaluation of this constant is
often intractable (O(KM ) for M discrete variables that can take K values).



Markov Network
In general the distribution of a Markov network H is given by

p(x) =
1

Z

∏
xC∈C

ψC(xC).

where C is a maximal clique of H.

In order to make a formal connection between conditional independence and
factorization in Markov networks we need to restrict our attention to potential
functions that are strictly positive (i.e. never zero or negative for any choice of the
argument variables). Given this restriction we can make a precise relationship
between factorization and conditional independence.Because we are restricted to
potential functions that are strictly positive it is convenient to express them as
exponentials, so that

ψ(xC) =
1

Z
exp(−E(xC)),

where E(xC) is the energy function and the exponential representation is called
the Boltzman distribution:

p(x) =
1

Z
exp

(
−
∑
xC∈C

E(xC)

)
=

1

Z
exp (−E(x)) .



Pairwise Markov Networks
In the special case that the graph contains cliques of only size 2, the distribution is
called a pairwise Markov network, with potentials defined on each link between two
variables.

p(x, y) ∝

∏
i

∏
j 6=i

ψ(xi, xj)

[∏
i

φ(yi, xi)

]

= exp

−∑
i

∑
j∼i

Eψ(xi, xj)−
∑
i

Eφ(yi, xi)


= exp (−E(x, y))

Computing the most likely x given y. Since p(x|y) ∝ p(x, y) we have that

x∗ = arg max
x

p(x|y)

x∗ = arg max
x

p(x, y)

x∗ = arg min
x
E(x, y) = arg min

x

∑
i

∑
j∼i

Eψ(xi, xj) +
∑
i

Eφ(yi, xi)



Example Application of Markov Network – Part I
Problem: We want to recover a binary image
from the observation of a corrupted version of
it.

x = {xi, i = 1, . . . , D} xi ∈ {−1, 1}: clean pixel

y = {yi, i = 1, . . . , D} yi ∈ {−1, 1}: corrupted pixel

φ(yi, xi) = eγxiyi , γ > 0 encourage yi and xi to be similar

ψ(xi, xj) = eβxixj , β > 0 encourage the image to be smooth

p(x, y) ∝

[
D∏
i=1

φ(yi, xi)

]∏
i∼j

ψ(xi, xj)


E(x, y) = −β

∑
i

∑
j∼i

xi, xj − γ
∑
i

yixi

Finding the most likely x given y is not easy (since the graph is not
singly-connected), but approximate algorithms often work well.



Example Application of Markov Network – Part II
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left Original clean image

middle Observed (corrupted) image

right Most likely clean image argmax
X

p(X|Y )



Example Application of Markov Network – Part III

p(noise) = 0.1 γ = 2.1 β = 4.0



Example Application of Markov Network – Part IV

Iterated conditional modes. The idea is first to initialize the variables {xi}, which
we do by simply setting xi = yi for all i. Then we take one node xj at a time and
we evaluate the total energy for the two possible states xj = +1 t xj = −1,
keeping other node variablees fixed, and set xj to whichever state has the lower
energy. This will either leave the probability unchanged, if xj is unchanged, or will
increase it. Because only one variable is changed, this is a simple local
computation that can be performed efficiently. We then repeat the update for
another site, and so on, until a suitable stopping criteria us satisfied. The nodes
can be updated in a systematic way, for instance by repeatedly raster scanning
through the image, or by choosing nodes at random.

If we have a sequence of updates in which every site is visited at least onee, and in
which no changes to the variables are made, then by definition the algorithm will
have converged to a local maximum of the probability. This need not, however,
correspond to the local maximum.



Independence in Markov Networks

A

B C

D

B ⊥⊥ C |A,D?

p(B|A,D,C) = p(B|A,D)?

p(B|A,D,C) =
p(A,B,C,D)

p(A,C,D)

=
p(A,B,C,D)∑
B p(A,B,C,D)

=
ψ(A,B)����ψ(A,C)ψ(B,D)����ψ(C,D)∑
B ψ(A,B)����ψ(A,C)ψ(B,D)����ψ(C,D)

= p(B|A,D)



Properties of Markov Networks

A B

C
p(A,B,C) = φAC(A,C)φBC(B,C)/Z

A B

C

→ A B

Marginalising over C makes A and B (graphically) dependent. In general
p(A,B) 6= p(A)p(B).

A B

C

→ A B

Conditioning on C makes A and B independent: p(A,B|C) = p(A|C)p(B|C).



General Rule for Independence in Markov Networks

x

⇒

A
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D

A
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D

⇒

A
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D

A

B C

D

Remove all links neighbouring the variables in the conditioning set Z.

If there is no path from any member of X to any member of Y, then X and
Y are conditionally independent given Z.



Gibbs distribution

Factor: Let D be a set of random variables. A factor ψ is a function from the
image of (D) to R. A factor is not negative if all its entries are non-negative.

A distribution p is a Gibbs distribution parametrized by a set of factors
Ψ = {ψ1(D1), . . . , ψK(DK)} if it is defined as follows:

p(x1, . . . , xn) =
1

Z
p̃(x1, . . . , xn),

where
p̃(x1, . . . , xn) = ψ1(D1)ψ2(D2) · · ·ψK(DK)

is an unnormalized measure and

Z =
∑

x1,...,xn

p̃(x1, . . . , xn)

is the partition function.

Factorization over a Markov network. We say that a Gibbs distribution factorizes
over a Markov Network H if each Dk (k = 1, . . . ,K) is a complete subgraph of H
(clique potentials).



Separation

Separation. A subset S separates a subset A from subset B (for disjoint X and Y )
in a Markov network H if every path from any member of X to any member of Y
passes through Z. If there is no path from a member X to a member Y then X is
separated from Y , which is denoted sepH(X,Y | Z). If Z = ∅, then providing that
no path exist between X and Y , X and Y are separated.

Separation is monotonic in Z: if sepH(X,Y | Z) then sepH(X,Y | Z ′) for
Z ′ ⊃ Z. Non-monotonic independence relationships cannot be encoded with this
definition of separation.



Factorization and I-Map (Soundness of the separation
criterion)

Factorization ⇒ I-Map:

Let p be a distribution over X , and H a Markov network structure over X . If p is a
Gibbs distribution that factorizes over H, then H is an I-map for p.

I-Map ⇒ Factorization (Hammersley-Clifford theorem):

Let p be a positive distribution over X , and H a Markov network structure over X .
If H is an I-map for p, then p is a Gibbs distribution that factorizes over H.

A distribution is said to be positive if for all x in the domain of X such that x 6= 0,
p(x) > 0.



Markov Network Properties

Global Markov property

I(H) = {X ⊥⊥ Y | Z : sepH(X,Y | Z)}.

Local Markov property

p(x | X − {x}) = p(x | Ne(x)).

More specifically,

Il(H) = {x ⊥⊥ {X − x− Ne(x)} | Ne(x) : x ∈ X}.

Pairwise Markov property

Ip(H) = {x ⊥⊥ y | {X − {x, y}} : edge(x, y) /∈ H}.



Conditional Independence Properties

Symmetry: X ⊥⊥ Y | Z ⇒ Y ⊥⊥ X | Z.

Decomposition: X ⊥⊥ Y,W | Z ⇒ X ⊥⊥ Y | Z.

Weak union: X ⊥⊥ Y,W | Z ⇒ X ⊥⊥ Y | Z,W .

Contraction:

(X ⊥⊥W | Z) & (X ⊥⊥ Y | Z)⇒ X ⊥⊥ Y,W | Z

.

Intersection (for positive distributions):

(X ⊥⊥ Y | Z,W ) & (X ⊥⊥W | Z, Y )⇒ (X ⊥⊥ Y,W ⊥⊥ Z)

.



Relationships between Markov Properties – Part I

For any Markov network H, and any Gibbs distribution p, we have that if p
satisfies Il(H) then it satisfies Ip(H). Proof sketch: Assume that
edge(x, y) /∈ H, then

sepH(x,X − {x} − Ne(x) | Ne(x)) & sepH(y,X − {y} − Ne(y) | Ne(y))

⇒ sepH(x, y | Ne(x)∪Ne(y)∪R) with R = X −Ne(x)∪Ne(y)∪ {x} ∪ {y}

⇒ sepH(x, y | X − {x} − {y})

⇒ x ⊥⊥ y | X − {x} − {y}

⇒ p(x, y | X − {x} − {y}) = p(x | X − {x} − {y})p(y | X − {x} − {y}).



Relationships between Markov Properties – Part II

For any Markov network H, and any distribution p, we have that if p satisfies
I(H) it satisfies Il(H).

The proof follows directly from the fact that if X and Y are not connected by
an edge, then they are necessarily separated by all the remaining nodes of the
graph. The converse is true only for positive distributions.



Relationships between Markov Properties – Part III

Let p be a positive distribution. If p satisfies Ip(H), then p satisfies I(H).

We need to prove that for all disjoint sets X, Y , Z

sepH(X,Y | Z)⇒ p satisfies X ⊥⊥ Y | Z. (1)

For |Z| = n− 2, this equation follows directly from the definition of Ip(H).
Using induction, assume that the equation above holds for every Z ′ with size
|Z ′| = k and let Z be any set such that |Z| = k−1. We distinguish two cases.
In the first case X ∪ Y ∪ Z = X . In the second case X ∪ Y ∪ Z 6= X .



Relationships between Markov Properties – Part IV

In the first case, assume, without loss of generality that |Y | ≥ 2. We have that:

Y = Y ′ ∪A, Y’ and A disjoint,

X ⊥⊥ Y ′ ∪ Z,

X ⊥⊥ A ∪ Z,

X ⊥⊥ Y ′ | Z ∪A, as separation is monotonic,

X ⊥⊥ A | Z ∪ Y ′, as separation is monotonic.

The separator sets Z ∪A and Z ∪ Y ′ are at least of size k+ 1 and therefore satisfy
equation (1). Because p is positive, we can apply the intersection properly
((X ⊥⊥ Y | Z,W ) & (X ⊥⊥W | Z, Y )⇒ (X ⊥⊥ Y,W | Z)) and conclude that p
satisfies X ⊥⊥ Y ′ ∪A | Z.



Markov Random Field

A MRF is defined by a set of distributions p(x, | Ne(xi))) where i ∈ {1, 2, . . . , n}
indexes the distribution and Ne(x) are the neighbors of xi, namely, that the subset
of variables x1,...,xn that the distribution of variable xi depends on. The term
Markov indicates that this is a proper subset of the variables. A distribution is an
MRF with respect to a Markov network H if

p(xi | x−i) = p(xi | Ne(xi)),

where Ne(xi) are the neighboring variables according to H. The notation x−i is a
short and for all the set of variables in X excluding the variable xi.



The Boltzmann machine
A MN on binary variables dom(xi) = {0, 1} of the form

p(x|w, b) =
1

Z(w, b)
e
∑

i<j wijxixj+
∑

i bixi

where the interactions wij are the ‘weights’ and the bi the biases.

This model has been studied in the machine learning community as a basic
model of distributed memory and computation. The xi = 1 represents a
neuron ‘firing’, and xi = 0 not firing. The matrix w describes which neurons
are connected to each other. The conditional

p(xi = 1|x\i) = σ

bi +
∑
j 6=i

wijxj

 , σ(x) = ex/(1 + ex).

The graphical model of the BM is an undirected graph with a link between
nodes i and j for wij 6= 0. For all but specially constrained w inference will
be typically intractable.

Given a set of data x1, . . . ,xn, one can set the parameters w, b by maximum
likelihood (though this is computationally difficult).



The Ising model

x1 x2 x3

x4 x5 x6

x7 x8 x9

xi ∈ {+1,−1}:

p(x1, . . . , x9) =
1

Z

∏
i∼j

φij(xi, xj)

φij(xi, xj) = e−
1

2T (xi−xj)
2

i ∼ j denotes the set of indices where i and j are neighbours in the graph. The
potential encourages neighbours to be in the same state.

Spontaneous global behaviour

0 0.5 1 1.5 2
0
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T/Tc

M

M = |
∑N
i=1 xi|/N . As the temperature T decreases

towards the critical temperature Tc a phase transition
occurs in which a large fraction of the variables become
aligned in the same state. Even though we only ‘softly’
encourage neighbours to be in the same state, for a
low but finite T , the variables are all in the same state.
Paradigm for ‘emergent behaviour’.



Alternative Rule for Independence in Belief Networks

X ⊥⊥Y|Z?

Ancestral Graph: Remove any node which
is neither in X ∪ Y ∪ Z nor an ancestor of
a node in this set, together with any edges
in or out of such nodes.

Moralisation: Add a line between any two
nodes which have a common child.
Remove arrowheads.

Separation: Remove all links from Z.

Independence: If there are no paths from
any node in X to one in Y then
X ⊥⊥ Y |Z.

A B

C D

E F

G H I

L M

A ⊥⊥ I |F,M



Alternative Rule for Independence in Belief Networks
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Alternative Rule for Independence in Belief Networks
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Alternative Rule for Independence in Belief Networks

X ⊥⊥Y|Z?

Ancestral Graph: Remove any node which
is neither in X ∪ Y ∪ Z nor an ancestor of
a node in this set, together with any edges
in or out of such nodes.

Moralisation: Add a line between any two
nodes which have a common child.
Remove arrowheads.

Separation: Remove all links from Z.

Independence: If there are no paths from
any node in X to one in Y then
X ⊥⊥ Y |Z.

A B

C D

E F

G H I

L M

A>>I|F,LA>>I|F,L



Expressiveness of Belief and Markov Networks

Cannot represent independence information in certain belief networks with a
Markov network.

A Belief network
A B

C A⊥⊥B

Markov representation?
Since we have a term p(C|A,B), the MN must have the clique A,B,C:
A B

C

A>>B



Expressiveness of Belief and Markov Networks

Cannot represent independence information in certain Markov networks with a
Belief network.

A Markov network
A

B C

D

B⊥⊥C|A,D

Belief Network representation?
Any DAG on A,B,C,D must have a collider.

A

B C

D

B>>C|A,D



Representations of distributions

For a distribution P form list LP of all the independence statements.

For a graph G, form list of all the possible independence statements LG.

Then we define:

LP ⊆ LG Dependence Map (D-map)
LP ⊇ LG Independence Map (I-map)
LP = LG Perfect Map

In the above we assume the statement l is contained in L if it is consistent with
(can be derived from) the independence statements in L.



Representations of distributions

p(t1, t2, y1, y2) = p(t1)p(t2)
∑
h

p(y1|t1, h)p(y2|t2, h)p(h)

LP = {t1⊥⊥(t2, y2), t2⊥⊥(t1, y1)}

Consider the graph of the BN

p(y2|y1, t2)p(y1|t1)p(t1)p(t2)

For this we have LG = {t2⊥⊥(t1, y1)}
LG ⊂ LP so that the BN is an I-MAP for p since every independence
statement in the BN is true for the corresponding graph.

Since LP 6⊆ LG the BN is not a D-MAP for p.

In this case no perfect MAP (a BN or a MN) can represent p.



Representing dependence?

GMs are generally most suited to represented independence. The reason is that
local dependence doesn’t imply global dependencies. For example

p(a, b, c) = p(a)p(b|a)p(c|b)

p(a) =

(
3/5
2/5

)
, p(b|a) =

 1/4 15/40
1/12 1/8
2/3 1/2

 , p(c|b) =

(
1/3 1/2 15/40
2/3 1/2 5/8

)
For these tables, a>>b, b>>c, but a⊥⊥c.

Local dependence does not guarantee dependence of path-connected variables.

Graphical independence → distribution independence.

Graphical dependence 9 distribution dependence.

The moral of the story is that graphical models cannot generally enforce
distributions to obey the dependencies implied by the graph.



Factor Graphs
A square node represents a factor (non negative function) of its neighbouring
variables.

A

B

C D

E

f1

f2

f3 f4

The joint function is the product of all factors:

f(A,B,C,D,E) = f1(A,B)f2(B,C,D)f3(C,E)f4(D,E)

Factor graphs are useful for performing efficient computations (not just for prob-
ability).



Factor Graphs versus Markov Networks

a

bc

(a)

a

bc

(b)

a

bc

(c)

a φ(a, b, c)

b φ(a, b)φ(b, c)φ(c, a)

c φ(a, b, c)

Both (a) and (b) have the same Markov network (c).

Whilst (b) contains the same (lack of) independence statements as (a), it
expresses more constraints on the form of the potential.


