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Inference

Inference corresponds to using the distribution to answers questions about the
environment.

examples

What is the probability p(x = 4|y = 1, z = 2)?

What is the most likely joint state of the distribution p(x, y)?

What is the entropy of the distribution p(x, y, z)?

What is the probability that this example is in class 1?

What is the probability the stock market will do down tomorrow?

Computational Efficiency

Inference can be computationally very expensive and we wish to characterise
situations in which inferences can be computed efficiently.

For singly-connected graphical models, and certain inference questions, there
(usually) exist efficient algorithms based on the concept of message passing.

In general, the case of multiply-connected models is computationally
inefficient.



Sum-Product Algorithm - Non Branching Tree

p(a, b, c, d) ∝ f1 (a, b) f2 (b, c) f3 (c, d) f4 (d) a, b, c, d binary variables

Passing variable-to-variable messages from d up to a

µd→c (c)µc→b (b)µb→a (a)

←←←
a b c d

f1 f2 f3 f4

p(a) =
∑
b,c,d

p(a, b, c, d)

∝
∑
b,c,d

f1 (a, b) f2 (b, c) f3 (c, d) f4 (d)⇒ 23 sums

=
∑
b

f1 (a, b)
∑
c

f2 (b, c)
∑
d

f3 (c, d) f4 (d)⇒ 2× 3 sums︸ ︷︷ ︸
µd→c(c)︸ ︷︷ ︸

µc→b(b)︸ ︷︷ ︸
µb→a(a)

⇒ Passing variable-to-variable messages from d up to a.
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Sum-Product Algorithm - Non Branching Tree

For p(c) need to send messages in both directions

µd→c (c)µb→c (c)µa→b (b)

←→→
a b c d

f1 f2 f3 f4

p(c) ∝
∑
a,b,d

f1 (a, b) f2 (b, c) f3 (c, d) f4 (d)

=
∑
b

∑
a

f1 (a, b)︸ ︷︷ ︸
µa→b(b)

f2 (b, c)

︸ ︷︷ ︸
µb→c(c)

∑
d

f3 (c, d) f4 (d)︸ ︷︷ ︸
µd→c(c)



Sum-Product Algorithm – Branching Tree

p(a, b, c, d, e) ∝ f1 (a, b) f2 (b, c, d) f3 (c) f4 (d, e) f5 (d)

a b

c

d e

f1 f2

f3

f4

f5

Define factor-to-variable messages and variable-to-factor messages

p(a) ∝
∑
b

f1 (a, b)
∑
c,d

f2 (b, c, d) f3 (c)︸ ︷︷ ︸
µc→f2

(c)=µf3→c(c)

f5 (d)︸ ︷︷ ︸
µf5→d(d)

∑
e

f4 (d, e)︸ ︷︷ ︸
µf4→d(d)︸ ︷︷ ︸

µd→f2
(d)︸ ︷︷ ︸

µb→f1
(b)=µf2→b(b)︸ ︷︷ ︸

µf1→a(a)

⇒ Marginal inference for a singly-connected structure is ‘easy’.



Sum-Product Algorithm for Factor Graphs

Variable to factor message

µv→f (v) =
∏

fi∼v\f

µfi→v (v)

Messages from extremal variables are set to 1

f

f1

f2

v

µf1→
v
(v)

µ
f2→v (v)

µv→f (v)

Factor to variable message

µf→v (v) =
∑
{vi}

f(v, {vi})
∏

vi∼f\v

µvi→f (vi)

Messages from extremal factors are set to the
factor

v

v1

v2

f µ
v1→

f
(v1

)

µ
v
2→f (v2)

µf→v (v)

Marginal

p(v) ∝
∏
fi∼v µfi→v (v)



Max Product algorithm

p(a, b, c, d) ∝ f1 (a, b) f2 (b, c) f3 (c, d) f4 (d) a, b, c, d binary variables

a b c d
f1 f2 f3 f4

max
a,b,c,d

p(a, b, c, d) = max
a,b,c,d

f1 (a, b) f2 (b, c) f3 (c, d) f4 (d)

= max
a

max
b
f1 (a, b)max

c
f2 (b, c)max

d
f3 (c, d) f4 (d)︸ ︷︷ ︸
µd→c(c)︸ ︷︷ ︸

µc→b(b)︸ ︷︷ ︸
µb→a(a)



Max Product Algorithm for Factor Graphs

Variable to factor message

µv→f (v) =
∏

fi∼v\f

µfi→v (v)
f

f1

f2

v

µf1→
v
(v)

µ
f2→v (v)

µv→f (v)

Factor to variable message

µf→v (v) = max
{vi}

f(v, {vi})
∏

vi∼f\v

µvi→f (vi)
v

v1

v2

f µ
v1→

f
(v1

)

µ
v
2→f (v2)

µf→v (v)

Most probable state (of joint)

v∗ = argmax
v

∏
fi∼v µfi→v (v)



Message Passing

Also known as ‘belief propagation’ or ‘dynamic programming’.

Note that for non-branching graphs (they look like ‘lines’), only variable to
variable messages are required.

For message passing to work we need to be able to distribute the operator
over the factors (which means that the operator algebra is a semiring) and
that the graph is singly-connected.

Provided the above conditions hold, ‘marginal’ inference scales linearly with
the number of nodes in the graph.



Message Passing

If the graph is multiply-connected, message passing can still be implemented
since it is a local algorithm. This is a popular approximation technique.

Sometimes it is possible to identify a singly-connected structure from a
multiply-connected structure by conditioning on a small set of variables (the
cut-set). One can then run a set of message-passing algorithms, one for each
state of the cut-set.

What if the operator algebra is not a semiring? Won’t work in general. An
example is where we want

max
c,e,f

∑
a,b,d

p(a, b, c, d, e, f)

In this case, the max
∑

operator is not distributive (the max of a sum is not
the same as the sum of a max).



Log Messages

µx→f (x) =
∏

g∈{Ne(x)\f}

µg→f (g)

µf→x(x) =
∑
Xf\x

φf (Xf )
∏

y∈Ne(f)\x

µy→f (y)

λ = logµ, λx→f (x) =
∑

g∈{Ne(x)\f}

λg→f (g)

λ∗y→f = max
y∈{Ne(f)\x}

λy→f (y)

λf→x(x) = λ∗y→f + log

∑
Xf\x

φf (Xf ) exp

 ∑
y∈Ne(f)\x

λy→f (y)− λ∗y→f






Cut-set conditioning

Identify a set of variables to reveal a set of singly-connected structures.

a b

cd

⇒

a b

cd

max
a,b,c,d

φ(a, b)φ(b, c)φ(c, d)φ(a, d)

= max
a

max
b,c,d

φ(a, b)φ(b, c)φ(c, d)φ(a, d)︸ ︷︷ ︸
singly-connected for fixed a

Each state of the cut-set identifies a singly-connected structure, for which the
inference is performed efficiently. We then have to carry out the final operations
over all states of the cutset.



Markov Chains

v1 v2 v3 v4

p(v1, . . . , vT ) = p(v1)︸ ︷︷ ︸
initial

T∏
t=2

p(vt|vt−1)︸ ︷︷ ︸
Transition

‘Marginal’ inference can be carried out in O(T ).
Can use a state-transition diagram to represent p(vt|vt−1)

1 2

34

56

7

8 9



Most probable and shortest paths

1 2

34

56

7

8 9

The shortest (unweighted) path from state 1 to state 7 is 1− 2− 7.

The most probable path from state 1 to state 7 is 1− 8− 9− 7 (assuming
uniform transition probabilities). The latter path is longer but more probable
since for the path 1− 2− 7, the probability of exiting state 2 into state 7 is
1/5.



Most probable path: message passing

Want to find the most path from state a to state b. First assume there exists a
length T path, a, s2, . . . , sT−1, b and define the maximal path probability:

E (a→ b, T ) = max
s2,...,sT−1

p(s2|s1 = a)p(s3|s2)p(s4|s3) . . . p(sT = b|sT−1)

= max
s3,...,sT−1

max
s2

p(s2|s1 = a)p(s3|s2)︸ ︷︷ ︸
γ2→3(s3)

p(s4|s3) . . . p(sT = b|sT−1)

To compute this efficiently we define messages

γt→t+1 (st+1) = max
st

γt−1→t (st) p(st+1|st), t ≥ 2, γ1→2 (s2) = p(s2|s1 = a)

until the point

E (a→ b, T ) = max
sT−1

γT−2→T−1 (sT−1) p(sT = b|sT−1) = γT−1→T (sT = b)



Now find the maximal path probability for timestep T + 1. Since the messages up
to time T − 1 will be the same as before, we need only compute one additional
message, γT−1→T (sT ), from which

E (a→ b, T + 1) = max
sT

γT−1→T (sT ) p(sT+1 = b|sT ) = γT→T+1 (sT+1 = b)

Proceed until we reach E (a→ b, N) where N is the number of nodes in the graph.
The optimal time t∗ is then given by which of E (a→ b, 2) , . . . , E (a→ b, N) is
maximal. Given t∗ one can begin to backtrack. Since

E (a→ b, t∗) = max
st∗−1

γt∗−2→t∗−1 (st∗−1) p(st∗ = b|st∗−1)

we know the optimal state

s∗t∗−1 = argmax
st∗−1

γt∗−2→t∗−1 (st∗−1) p(st∗ = b|st∗−1)

We can then continue to backtrack:

s∗t∗−2 = argmax
st∗−2

γt∗−3→t∗−2 (st∗−2) p(s
∗
t∗−1|st∗−2)

and so on. See mostprobablepath.m.



Most probable path: message passing

Numerical issues
As it stands, the algorithm is numerically impractical since the messages are
recursively multiplied by values usually less than 1 (at least for the case of
probabilities). One will therefore quickly run into numerical underflow (or possibly
overflow in the case of non-probabilities) with this method. This can be remedied
by working in log space, and defining a form of max-sum algorithm.

Shortest weighted path
Each edge has a weight u(st|st−1). A weighted path from a to b is the sum of the
weights along the path.

To solve the shortest weighted path problem we set

p(st|st−1) ∝ exp(−u(st|st−1))

where u(st|st−1) is the edge weight and is infinite if there is no edge from st−1 to
st. This method is more general than Dijkstra’s algorithm which requires weights
to be positive.



Equilibrium distribution
It is interesting to know how the marginal p(xt) evolves through time:

p(xt = i) =
∑
j

p(xt = i|xt−1 = j)︸ ︷︷ ︸
Mij

p(xt−1 = j)

The marginal p(xt = i) has the interpretation of the frequency that we visit state i
at time t, given we started from p(x1) and randomly drew samples from the
transition p(xτ |xτ−1). As we repeatedly sample a new state from the chain, the
distribution at time t, for an initial distribution p1(i) is

pt = Mt−1p1

If, for t→∞, p∞ is independent of the initial distribution p1, then p∞ is called
the equilibrium distribution of the chain.

p∞(i) =
∑
j

p(xt = i|xt−1 = j)p∞(j)

In matrix notation this can be written as the vector equation

p∞ = Mp∞

so that the stationary distribution is proportional to the eigenvector with unit
eigenvalue of the transition matrix.



PageRank

Define the matrix

Aij =

{
1 if website j has a hyperlink to website i
0 otherwise

From this we can define a Markov transition matrix with elements

Mij =
Aij∑
i′ Ai′j

If we jump from website to website, the equilibrium distribution component
p∞(i) is the relative number of times we will visit website i. This has a
natural interpretation as the ‘importance’ of website i.

For each website i a list of words associated with that website is collected.
After doing this for all websites, one can make an ‘inverse’ list of which
websites contain word w. When a user searches for word w, the list of
websites that contain word is then returned, ranked according to the
importance of the site.



Hidden Markov Models (HMM)

This is a popular time series model used throughout many different fields (Machine
Learning, Statistics, Tracking, Bioinformatics and many many more).

A set of discrete or continuous variables
v1, . . . , vT ≡ v1:T which represent the
observed time-series.

A set of discrete hidden variables h1:T
that generate the observations.

· · · ht−1 ht ht+1 · · ·

vt−1 vt vt+1

p(v1:T , h1:T ) = p(v1|h1)p(h1)
T∏
t=2

p(vt|ht)p(ht|ht−1)

p(ht = j|ht−1 = i) = πji, π: transition matrix

p(vt = j|ht = i) = ρji, ρ: emission matrix



HMM: Common inference problems

Filtering Infer ht from p(ht|v1:t) which uses the observations up to time t

Smoothing Infer ht from p(ht|v1:T ) which also uses future observations

Viterbi Infer the most likely hidden sequence h1:T from
argmax
h1:T

p(h1:T |v1:T )



Inference in Hidden Markov Models – Part II

Belief network representation of a HMM:

h1 h2 h3 h4

v1 v2 v3 v4

As a factor graph:

f11 = p(v1|h1)
f12 = p(h2|h1)

f11

f12
h1 h2 h3 h4

v1 v2 v3 v4

Filtering: carried our by passing messages up and to the right.

Smoothing: combine filtering messages with messages up and to the left.
Viterbi computed similarly.



Localisation example – Part I
Problem: You’re asleep upstairs in your house and awoken by a burglar on the
ground floor. You want to figure out where the burglar might be based on a
sequence of noise information.

You mentally partition the ground floor into a 5× 5 grid. For each grid position

you know the probability
that if someone is in that
position the floorboard will
creak

you know the probability
that if someone is in that
position he will bump into
something in the dark

you assume that the burglar
can move only into a
neighbor grid square with
uniform probability

Prob. of creak Prob. of bump



Localisation example – Part II

We can represent the scenario using a HMM
where

· · · ht−1 ht ht+1 · · ·

vt−1 vt vt+1

The hidden variable ht represents the position of the burglar in the
grid at time t

ht ∈ {1, . . . , 25}

The visible variable vt represents creak/bump at time t

v=1: no creak, no bump

v=2: creak, no bump

v=3: no creak, bump

v=4: creak, bump



Localisation example – Part III

(top) Observed creaks and bumps for 10 time-steps

(below top) Filtering p(ht|v1:t)
(middle) Smoothing p(ht|v1:10)

(above bottom) Most likely sequence argmax
h1:T

p(h1:T |v1:T )

(bottom) True Burglar position



Natural Language Model Example – Part I

Problem: A ‘stubby finger’ typist has the tendency to hit either the correct key or
a neighbouring key. Given a typed sequence you want to infer what is the most
likely word that this corresponds to.

The hidden variable ht represents the intended letter at time t

The visible variable vt represents the letter that was actually typed at time t

We assume that there are 27 keys: lower case a to lower case z and the space bar.
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Natural Language Model Example – Part II

Given the typed sequence kezrninh what is the most likely word that this
corresponds to?

Listing the 200 most likely hidden sequences (using a form of Viterbi)

Discard those that are not in a standard English dictionary

Take the most likely proper English word as the intended typed word

. . . and the answer is . . .


