Efficient Inference in Trees¹

Salvador Ruiz Correa

Centro de Investigación en Matemáticas (CIMAT)

э.

¹These slides are *adapted* from those that accompany the book *Bayesian Reasoning and Machine Learning*. The book and demos can be downloaded from www.cs.ucl.ac.uk/staff/D.Barber/brml. We acknowledge David Barber for providing the original slides.

Inference

Inference corresponds to using the distribution to answers questions about the environment.

examples

- What is the probability p(x = 4|y = 1, z = 2)?
- What is the most likely joint state of the distribution p(x, y)?
- What is the entropy of the distribution p(x, y, z)?
- What is the probability that this example is in class 1?
- What is the probability the stock market will do down tomorrow?

Computational Efficiency

- Inference can be computationally very expensive and we wish to characterise situations in which inferences can be computed efficiently.
- For singly-connected graphical models, and certain inference questions, there (usually) exist efficient algorithms based on the concept of message passing.
- In general, the case of multiply-connected models is computationally inefficient.

 $p(a,b,c,d) \propto f_{1}\left(a,b\right) f_{2}\left(b,c\right) f_{3}\left(c,d\right) f_{4}\left(d\right) \quad a,b,c,d \text{ binary variables}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$p(a) = \sum_{b,c,d} p(a, b, c, d)$$
$$\propto \sum_{b,c,d} f_1(a, b) f_2(b, c) f_3(c, d) f_4(d) \Rightarrow 2^3 \text{ sums}$$

 $p(a, b, c, d) \propto f_1(a, b) f_2(b, c) f_3(c, d) f_4(d) \quad a, b, c, d \text{ binary variables}$

$$p(a) = \sum_{b,c,d} p(a, b, c, d)$$

$$\propto \sum_{b,c,d} f_1(a, b) f_2(b, c) f_3(c, d) f_4(d) \Rightarrow 2^3 \text{ sums}$$

$$= \sum_b f_1(a, b) \sum_c f_2(b, c) \sum_d f_3(c, d) f_4(d) \Rightarrow 2 \times 3 \text{ sums}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $p(a,b,c,d) \propto f_{1}\left(a,b\right) f_{2}\left(b,c\right) f_{3}\left(c,d\right) f_{4}\left(d\right) \quad a,b,c,d \text{ binary variables}$

$$p(a) = \sum_{b,c,d} p(a,b,c,d)$$

$$\propto \sum_{b,c,d} f_1(a,b) f_2(b,c) f_3(c,d) f_4(d)$$

$$= \sum_{b} f_1(a,b) \sum_{c} f_2(b,c) \underbrace{\sum_{d} f_3(c,d) f_4(d)}_{\mu_{d \to c}(c)}$$

$$\mu_{c \to b}(b)$$

 $p(a,b,c,d) \propto f_{1}\left(a,b\right) f_{2}\left(b,c\right) f_{3}\left(c,d\right) f_{4}\left(d\right) \quad a,b,c,d \text{ binary variables}$

Passing variable-to-variable messages from d up to a

For p(c) need to send messages in both directions

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$$p(c) \propto \sum_{a,b,d} f_1(a,b) f_2(b,c) f_3(c,d) f_4(d)$$

= $\sum_{b} \sum_{\substack{a \\ \mu_{a \to b}(b) \\ \mu_{b \to c}(c)}} f_1(a,b) f_2(b,c) \sum_{\substack{d \\ \mu_{d \to c}(c)}} f_3(c,d) f_4(d)$

Define factor-to-variable messages and variable-to-factor messages

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \Rightarrow Marginal inference for a singly-connected structure is 'easy'.

Sum-Product Algorithm for Factor Graphs

Variable to factor message

$$\mu_{v \to f}\left(v\right) = \prod_{f_i \sim v \setminus f} \mu_{f_i \to v}\left(v\right)$$

Messages from extremal variables are set to 1

Factor to variable message

$$\mu_{f \to v} \left(v \right) = \sum_{\{v_i\}} f(v, \{v_i\}) \prod_{v_i \sim f \setminus v} \mu_{v_i \to f} \left(v_i \right)$$

Messages from extremal factors are set to the factor

Marginal

$$p(v) \propto \prod_{f_i \sim v} \mu_{f_i \to v} (v)$$

Max Product algorithm

 $p(a,b,c,d) \propto f_{1}\left(a,b\right) f_{2}\left(b,c\right) f_{3}\left(c,d\right) f_{4}\left(d\right) \quad a,b,c,d \text{ binary variables}$

$$a \xrightarrow{f_1} b \xrightarrow{f_2} c \xrightarrow{f_3} d \xrightarrow{f_4}$$

$$\max_{a,b,c,d} p(a,b,c,d) = \max_{a,b,c,d} f_1(a,b) f_2(b,c) f_3(c,d) f_4(d)$$

=
$$\max_{a} \max_{b} f_1(a,b) \max_{c} f_2(b,c) \underbrace{\max_{d} f_3(c,d) f_4(d)}_{\mu_{d \to c}(c)}$$

$$\underbrace{\mu_{c \to b}(b)}_{\mu_{b \to a}(a)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Max Product Algorithm for Factor Graphs

Most probable state (of joint)

$$v^* = \underset{v}{\operatorname{argmax}} \prod_{f_i \sim v} \mu_{f_i \to v} (v)$$

Message Passing

- Also known as 'belief propagation' or 'dynamic programming'.
- Note that for non-branching graphs (they look like 'lines'), only variable to variable messages are required.
- For message passing to work we need to be able to distribute the operator over the factors (which means that the operator algebra is a semiring) and that the graph is singly-connected.
- Provided the above conditions hold, 'marginal' inference scales linearly with the number of nodes in the graph.

Message Passing

- If the graph is multiply-connected, message passing can still be implemented since it is a local algorithm. This is a popular approximation technique.
- Sometimes it is possible to identify a singly-connected structure from a multiply-connected structure by conditioning on a small set of variables (the cut-set). One can then run a set of message-passing algorithms, one for each state of the cut-set.
- What if the operator algebra is not a semiring? Won't work in general. An example is where we want

$$\max_{c,e,f} \sum_{a,b,d} p(a,b,c,d,e,f)$$

In this case, the $\max \sum$ operator is not distributive (the max of a sum is not the same as the sum of a max).

Log Messages

$$\mu_{x \to f}(x) = \prod_{g \in \{Ne(x) \setminus f\}} \mu_{g \to f}(g)$$
$$\mu_{f \to x}(x) = \sum_{X_f \setminus x} \phi_f(X_f) \prod_{y \in Ne(f) \setminus x} \mu_{y \to f}(y)$$
$$\lambda = \log \mu, \quad \lambda_{x \to f}(x) = \sum_{g \in \{Ne(x) \setminus f\}} \lambda_{g \to f}(g)$$
$$\lambda_{y \to f}^* = \max_{y \in \{Ne(f) \setminus x\}} \lambda_{y \to f}(y)$$
$$\lambda_{f \to x}(x) = \lambda_{y \to f}^* + \log \left\{ \sum_{X_f \setminus x} \phi_f(X_f) \exp \left\{ \sum_{y \in Ne(f) \setminus x} \lambda_{y \to f}(y) - \lambda_{y \to f}^* \right\} \right\}$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲□▶

Cut-set conditioning

Identify a set of variables to reveal a set of singly-connected structures.

$$\max_{a,b,c,d} \phi(a,b)\phi(b,c)\phi(c,d)\phi(a,d)$$
$$= \max_{a} \max_{b,c,d} \phi(a,b)\phi(b,c)\phi(c,d)\phi(a,d)$$

singly-connected for fixed a

Each state of the cut-set identifies a singly-connected structure, for which the inference is performed efficiently. We then have to carry out the final operations over all states of the cutset.

Markov Chains

'Marginal' inference can be carried out in O(T). Can use a state-transition diagram to represent $p(v_t|v_{t-1})$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Most probable and shortest paths

- The shortest (unweighted) path from state 1 to state 7 is 1 2 7.
- The most probable path from state 1 to state 7 is 1-8-9-7 (assuming uniform transition probabilities). The latter path is longer but more probable since for the path 1-2-7, the probability of exiting state 2 into state 7 is 1/5.

Most probable path: message passing

Want to find the most path from state a to state b. First assume there exists a length T path, a, s_2, \ldots, s_{T-1} , b and define the maximal path probability:

$$E(\mathbf{a} \to \mathbf{b}, T) = \max_{\substack{s_2, \dots, s_{T-1} \\ s_3, \dots, s_{T-1}}} p(s_2 | s_1 = \mathbf{a}) p(s_3 | s_2) p(s_4 | s_3) \dots p(s_T = \mathbf{b} | s_{T-1})$$
$$= \max_{\substack{s_3, \dots, s_{T-1} \\ y_{2 \to 3}(s_3)}} p(s_2 | s_1 = \mathbf{a}) p(s_3 | s_2) p(s_4 | s_3) \dots p(s_T = \mathbf{b} | s_{T-1})$$

To compute this efficiently we define messages

$$\gamma_{t \to t+1} \left(s_{t+1} \right) = \max_{s_t} \gamma_{t-1 \to t} \left(s_t \right) p(s_{t+1}|s_t), \quad t \ge 2, \quad \gamma_{1 \to 2} \left(s_2 \right) = p(s_2|s_1 = \mathsf{a})$$

until the point

$$E(\mathbf{a} \to \mathbf{b}, T) = \max_{s_{T-1}} \gamma_{T-2 \to T-1} (s_{T-1}) p(s_T = \mathbf{b}|s_{T-1}) = \gamma_{T-1 \to T} (s_T = \mathbf{b})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Now find the maximal path probability for timestep T + 1. Since the messages up to time T - 1 will be the same as before, we need only compute one additional message, $\gamma_{T-1 \rightarrow T} (s_T)$, from which

$$E(\mathbf{a} \to \mathbf{b}, T+1) = \max_{s_T} \gamma_{T-1 \to T}(s_T) \, p(s_{T+1} = \mathbf{b}|s_T) = \gamma_{T \to T+1} \, (s_{T+1} = \mathbf{b})$$

Proceed until we reach $E(a \rightarrow b, N)$ where N is the number of nodes in the graph. The optimal time t^* is then given by which of $E(a \rightarrow b, 2), \ldots, E(a \rightarrow b, N)$ is maximal. Given t^* one can begin to backtrack. Since

$$E(\mathbf{a} \to \mathbf{b}, t^*) = \max_{s_{t^*-1}} \gamma_{t^*-2 \to t^*-1} (s_{t^*-1}) p(s_{t^*} = \mathbf{b}|s_{t^*-1})$$

we know the optimal state

$$\mathbf{s}_{t^*-1}^* = \underset{s_{t^*-1}}{\operatorname{argmax}} \ \gamma_{t^*-2 \to t^*-1} \left(s_{t^*-1} \right) p(s_{t^*} = \mathbf{b}|s_{t^*-1})$$

We can then continue to backtrack:

$$\mathbf{s}_{t^*-2}^* = \underset{\mathbf{s}_{t^*-2}}{\operatorname{argmax}} \gamma_{t^*-3 \to t^*-2} \left(s_{t^*-2} \right) p(\mathbf{s}_{t^*-1}^* | s_{t^*-2})$$

and so on. See mostprobablepath.m.

Numerical issues

As it stands, the algorithm is numerically impractical since the messages are recursively multiplied by values usually less than 1 (at least for the case of probabilities). One will therefore quickly run into numerical underflow (or possibly overflow in the case of non-probabilities) with this method. This can be remedied by working in log space, and defining a form of max-sum algorithm.

Shortest weighted path

Each edge has a weight $u(s_t|s_{t-1})$. A weighted path from a to b is the sum of the weights along the path.

To solve the shortest weighted path problem we set

 $p(s_t|s_{t-1}) \propto \exp(-u(s_t|s_{t-1}))$

where $u(s_t|s_{t-1})$ is the edge weight and is infinite if there is no edge from s_{t-1} to s_t . This method is more general than Dijkstra's algorithm which requires weights to be positive.

Equilibrium distribution

It is interesting to know how the marginal $p(x_t)$ evolves through time:

$$p(x_t = i) = \sum_{j} \underbrace{p(x_t = i | x_{t-1} = j)}_{M_{ij}} p(x_{t-1} = j)$$

The marginal $p(x_t = i)$ has the interpretation of the frequency that we visit state i at time t, given we started from $p(x_1)$ and randomly drew samples from the transition $p(x_\tau | x_{\tau-1})$. As we repeatedly sample a new state from the chain, the distribution at time t, for an initial distribution $\mathbf{p}_1(i)$ is

$$\mathbf{p}_t = \mathbf{M}^{t-1} \mathbf{p}_1$$

If, for $t \to \infty$, \mathbf{p}_{∞} is independent of the initial distribution \mathbf{p}_1 , then \mathbf{p}_{∞} is called the equilibrium distribution of the chain.

$$p_{\infty}(i) = \sum_{j} p(x_t = i | x_{t-1} = j) p_{\infty}(j)$$

In matrix notation this can be written as the vector equation

$$\mathbf{p}_{\infty} = \mathbf{M} \mathbf{p}_{\infty}$$

PageRank

Define the matrix

$$A_{ij} = \begin{cases} 1 & \text{if website } j \text{ has a hyperlink to website } i \\ 0 & \text{otherwise} \end{cases}$$

From this we can define a Markov transition matrix with elements

$$M_{ij} = \frac{A_{ij}}{\sum_{i'} A_{i'j}}$$

- If we jump from website to website, the equilibrium distribution component $p_\infty(i)$ is the relative number of times we will visit website i. This has a natural interpretation as the 'importance' of website i.
- For each website *i* a list of words associated with that website is collected. After doing this for all websites, one can make an 'inverse' list of which websites contain word *w*. When a user searches for word *w*, the list of websites that contain word is then returned, ranked according to the importance of the site.

Hidden Markov Models (HMM)

This is a popular time series model used throughout many different fields (Machine Learning, Statistics, Tracking, Bioinformatics and many many more).

- A set of discrete or continuous variables $v_1, \ldots, v_T \equiv v_{1:T}$ which represent the observed time-series.
- A set of discrete hidden variables $h_{1:T}$ that generate the observations.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

$$p(v_{1:T}, h_{1:T}) = p(v_1|h_1)p(h_1)\prod_{t=2}^T p(v_t|h_t)p(h_t|h_{t-1})$$

$$p(h_t = j | h_{t-1} = i) = \pi_{ji}, \quad \pi: \text{ transition matrix}$$

 $p(v_t = j | h_t = i) = \rho_{ji}, \quad \rho: \text{ emission matrix}$

HMM: Common inference problems

Filtering Infer h_t from $p(h_t|v_{1:t})$ which uses the observations up to time tSmoothing Infer h_t from $p(h_t|v_{1:T})$ which also uses future observations Viterbi Infer the most likely hidden sequence $h_{1:T}$ from $\underset{h_{1:T}}{\operatorname{argmax}} p(h_{1:T}|v_{1:T})$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inference in Hidden Markov Models - Part II

Belief network representation of a HMM:

- Filtering: carried our by passing messages up and to the right.
- Smoothing: combine filtering messages with messages up and to the left. Viterbi computed similarly.

Localisation example - Part I

Problem: You're asleep upstairs in your house and awoken by a burglar on the ground floor. You want to figure out where the burglar might be based on a sequence of noise information.

You mentally partition the ground floor into a 5×5 grid. For each grid position

- you know the probability that if someone is in that position the floorboard will creak
- you know the probability that if someone is in that position he will bump into something in the dark
- you assume that the burglar can move only into a neighbor grid square with uniform probability

Prob. of creak

Prob. of bump

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Localisation example – Part II

We can represent the scenario using a $\operatorname{HMM}\nolimits$ where

• The hidden variable h_t represents the position of the burglar in the grid at time t

 $h_t \in \{1, \dots, 25\}$

- The visible variable v_t represents creak/bump at time t
 - v=1: no creak, no bump
 - v=2: creak, no bump
 - v=3: no creak, bump
 - v=4: creak, bump

Localisation example – Part III

(top) Observed creaks and bumps for 10 time-steps (below top) Filtering $p(h_t|v_{1:t})$ (middle) Smoothing $p(h_t|v_{1:10})$ (above bottom) Most likely sequence $\underset{h_{1:T}}{\operatorname{argmax}} p(h_{1:T}|v_{1:T})$ (bottom) True Burglar position

Natural Language Model Example – Part I

Problem: A 'stubby finger' typist has the tendency to hit either the correct key or a neighbouring key. Given a typed sequence you want to infer what is the most likely word that this corresponds to.

- $\bullet\,$ The hidden variable h_t represents the intended letter at time t
- ${\ensuremath{\bullet}}$ The visible variable v_t represents the letter that was actually typed at time t

We assume that there are 27 keys: lower case a to lower case z and the space bar.

Natural Language Model Example – Part II

Given the typed sequence kezrninh what is the most likely word that this corresponds to?

- Listing the 200 most likely hidden sequences (using a form of Viterbi)
- Discard those that are not in a standard English dictionary
- Take the most likely proper English word as the intended typed word

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

... and the answer is ...