Efficient Inference in Trees!

Salvador Ruiz Correa

Centro de Investigacién en Matematicas (CIMAT)

1These slides are adapted from those that y the book B. ian R ing and Machine Learning. The book and demos can
be downloaded from www.cs.ucl.ac.uk/staff/D.Barber/brml. We acknowledge David Barber for providing the original slides.

www.cs.ucl.ac.uk/staff/D.Barber/brml

Inference

Inference corresponds to using the distribution to answers questions about the
environment.

examples
@ What is the probability p(z = 4|y =1,z = 2)7
@ What is the most likely joint state of the distribution p(z,y)?
@ What is the entropy of the distribution p(z,y, 2)?
@ What is the probability that this example is in class 17

@ What is the probability the stock market will do down tomorrow?

Computational Efficiency
@ Inference can be computationally very expensive and we wish to characterise
situations in which inferences can be computed efficiently.

o For singly-connected graphical models, and certain inference questions, there
(usually) exist efficient algorithms based on the concept of message passing.

@ In general, the case of multiply-connected models is computationally
inefficient.

Sum-Product Algorithm - Non Branching Tree

p(a,b,e,d) x fi(a,b) fa (b, c) f3 (¢, d) fa(d) a,b,c,d binary variables

(D——()—a—()—a—(0)—hi

pla) = Zp(a,b, ¢, d)

b,c,d

x Z f1(a,b) fa (b,c) f3(c,d) f4(d) = 23 sums

b,c,d

Sum-Product Algorithm - Non Branching Tree

p(a,b,e,d) x fi(a,b) fa (b, c) f3 (¢, d) fa(d) a,b,c,d binary variables

O—2—()—a—(O)——()—=

pla) = Zp(a,b, ¢, d)

b,c,d

x Z f1(a,b) fa (b,c) f3(c,d) f4(d) = 23 sums

b,c,d

ZZﬂ (a,b)Zfz (b,C)ng(c,d)f4(d) = 2 x 3 sums
b c d

Sum-Product Algorithm - Non Branching Tree

p(a,b,e,d) x fi(a,b) fa (b, c) f3 (¢, d) fa(d) a,b,c,d binary variables

(D——()—a—()—a—(0)—hi

pla) = Z:p(a,b7 ¢, d)

b,c,d

oc > fi(a,b) fa (be) fs (c,d) fa(d)

b,c,d

= fi@b)d fa(b,0)d fale,d) fa(d)
b c d

Ba—e(c)

He—sb(D)

Ho—a(a)

Sum-Product Algorithm - Non Branching Tree

p(a, b, c,d) x fi1(a,d) f2 (b, c) f3 (¢,d) fa(d) a,b,c,d binary variables
Ho—a (@) peos (frd—se (€)
o0& ‘o -
Passmg varlable to- varlable messages from d up to a

pla) = Zp(a,b, ¢, d)

b,c,d

oc > fi(a,b) fa (be) fs (c,d) fa(d)

b,c,d
= fi@b)d fa(b,0)d fale,d) fa(d)
b c d

de—u:(c)

He—b (b)

Hb—mr(a)

Sum-Product Algorithm - Non Branching Tree

For p(c) need to send messages in both directions

Ha—b (b) Hb—sc (C) Hd—c (C)

O (Db (Dbt
— =

p(e) o< Y fi(a,b) f2(b,¢) fs (c,d) fa (d)
a,b,d

=33 Ai(a.b) f2a(b,0)D fs(c,d) fa(d)
b a d

—_——
Ha—b(D) Hd—sc(c)

Ho—e(c)

Sum-Product Algorithm — Branching Tree
p(a,b,ed.e) o fi (a.b) fz (be,d) f3 (c) fu(de) fs (d) Jé

f2
\%@

Define factor-to-variable messages and variable-to-factor messages

o Y fi(a,0)Y] fo(bye,d) () Zf4 d,e)
b c,d
uc—>f2()=tfye(e) ufﬁd(aoﬁ,—/
/Lf4~>d(d)
Hdﬁfz(d)

Ho— fq (b):#fz%h(b)

Hfy —al(a)

= Marginal inference for a singly-connected structure is ‘easy’.

Sum-Product Algorithm for Factor Graphs

Variable to factor message

Hooy @)= Tt)

firno\f

Messages from extremal variables are set to 1

Factor to variable message

o () =Y fo}) T omss (00)

{vi} vi~ f\v

Messages from extremal factors are set to the
factor

Marginal

p(0) o< [Ty, im0 (V)

Max Product algorithm

pla,b,c,d) < f1(a,b) fa(b,c) f3(c,d) fa(d) a,b,c,d binary variables
b (b (b

maxp(abcd)— maxfl(a b) f2 (b,c) f3 (c,d) f1(d)

a,b,c,d

= max max f1(a,b) max fa(b,c) max f3(c,d) fa(d)

Hdﬂc(c)

Nc%b(b)

Mb%a(a)

Max Product Algorithm for Factor Graphs

Variable to factor message

,uv—>f H ,Ufl—w)
i\ f

Factor to variable message

uf%()—rflaXf vAvid) T toioss (00) C (v)‘%

viref\v ()

Most probable state (of joint)

v* = argmax [[, ., pf—o (V)
v

Message Passing

@ Also known as ‘belief propagation’ or ‘dynamic programming’.
@ Note that for non-branching graphs (they look like ‘lines’), only variable to
variable messages are required.

@ For message passing to work we need to be able to distribute the operator
over the factors (which means that the operator algebra is a semiring) and
that the graph is singly-connected.

@ Provided the above conditions hold, ‘marginal’ inference scales linearly with
the number of nodes in the graph.

Message Passing

o If the graph is multiply-connected, message passing can still be implemented
since it is a local algorithm. This is a popular approximation technique.

@ Sometimes it is possible to identify a singly-connected structure from a
multiply-connected structure by conditioning on a small set of variables (the
cut-set). One can then run a set of message-passing algorithms, one for each
state of the cut-set.

@ What if the operator algebra is not a semiring? Won't work in general. An
example is where we want

max > pla,b,c,de, f)
a,b,d
In this case, the max) operator is not distributive (the max of a sum is not
the same as the sum of a max).

Log Messages

Uos (x) = H tg—1(9)

ge{Ne(x)\f}
proa(@) =Y 6r(Xp) [m-s®
Xf\ﬂf yENe(f)\z
A=logp, despl@)= D Ags(9)
ge{Ne(z)\f}

* ma;
v f ye{Ne(}()\w} y=1(0)

Afoa(®) = Ayyy + log{ > ¢r(Xp)exp { > M) - Zﬁf}}
N

Xs\z yENe(f)\z

Cut-set conditioning

Identify a set of variables to reveal a set of singly-connected structures.

YT
O O

max ¢(a, b)p(b, ¢)p(c, d)p(a, d)

a,b,c,d
= max max @(a,b)d(b, c)p(c, d)p(a,d)

singly-connected for fixed a

Each state of the cut-set identifies a singly-connected structure, for which the
inference is performed efficiently. We then have to carry out the final operations
over all states of the cutset.

Markov Chains

T
p(vg,...,v H (velve—1)
o \‘/—/
|n|t|a| ~7 Transition

‘Marginal’ inference can be carried out in O(T).
Can use a state-transition diagram to represent p(v¢|vi—1)

4 3
1

7

2

Most probable and shortest paths

1—,)\27\—)7
|5

@ The shortest (unweighted) path from state 1 to state 7is 1 —2 — 7.

@ The most probable path from state 1 to state 7 is 1 — 8 — 9 — 7 (assuming
uniform transition probabilities). The latter path is longer but more probable

since for the path 1 — 2 — 7, the probability of exiting state 2 into state 7 is
1/5.

 —

Most probable path: message passing

Want to find the most path from state a to state b. First assume there exists a
length T path, a, so,...,s7_1,b and define the maximal path probability:
E(a—b,T)= max p(sa|s1 =a)p(ss|s2)p(sa|s3)...p(s7 =b|sr_1)

82,--,8T—1

= max maxp(sz|s; = a)p(ssls2)p(salss)...p(sT =b[sr_1)
83,--,8T—1 S2

Y2—3(53)

To compute this efficiently we define messages
Vet (St41) = maxe1p () P(seyalse), €22, Y12 (s2) = plszlsr = a)
St
until the point

E(a—=bT)= MaX YT -2-7-1 (s7—1) p(s7 = blsy—1) = yr—157 (57 = b)

Now find the maximal path probability for timestep 7"+ 1. Since the messages up
to time T — 1 will be the same as before, we need only compute one additional
message, Yr—1—7 (s7), from which

E(@—=bT+1)= MaX Y717 (s7) p(s741 = b|st) = yro141 (5741 = b)

Proceed until we reach E (a — b, N) where N is the number of nodes in the graph.
The optimal time ¢* is then given by which of E(a — b,2),...,E(a — b,N) is
maximal. Given t* one can begin to backtrack. Since

E(a — b,t*) = IMaxX Ygx —2—s¢*—1 (St*71>p(8t* = b|8t*71)

Sgx 1
we know the optimal state

Sfe_1 = AIGMAX Yy —2 4+ —1 (S¢=—1) D(St= = b|sy+_1)
Sex 1

We can then continue to backtrack:

Sfe_o = Argmax Yes —3—¢+—2 (Sp+—2) P(Sie _1 |81+ —2)
Si* o

and so on. See mostprobablepath.m.

Most probable path: message passing

Numerical issues

As it stands, the algorithm is numerically impractical since the messages are
recursively multiplied by values usually less than 1 (at least for the case of
probabilities). One will therefore quickly run into numerical underflow (or possibly
overflow in the case of non-probabilities) with this method. This can be remedied
by working in log space, and defining a form of max-sum algorithm.

Shortest weighted path
Each edge has a weight u(s¢|s¢—1). A weighted path from a to b is the sum of the
weights along the path.

To solve the shortest weighted path problem we set

p(8t]st—1) x exp(—u(st|si—1))

where u(s¢|s;—1) is the edge weight and is infinite if there is no edge from s;_; to
s¢. This method is more general than Dijkstra's algorithm which requires weights
to be positive.

Equilibrium distribution

It is interesting to know how the marginal p(x;) evolves through time:

p(xe =1) ZP zy =ilri—1 = j) p(x1-1 = J)
M;;

The marginal p(z; = i) has the interpretation of the frequency that we visit state i
at time ¢, given we started from p(z1) and randomly drew samples from the
transition p(z,|x-—1). As we repeatedly sample a new state from the chain, the
distribution at time ¢, for an initial distribution p1 (%) is

pr=M'"'p;

If, for t — 00, Poo is independent of the initial distribution p1, then py is called
the equilibrium distribution of the chain.

Poo(i) =D play = ilzr1 = §)poo(d)
J

In matrix notation this can be written as the vector equation

Poo = Mpoo

so that the stationary distribution is proportional to the eigenvector with unit
eigenvalue of the transition matrix.

PageRank

Define the matrix

A — 1 if website j has a hyperlink to website 4
* 0 otherwise

From this we can define a Markov transition matrix with elements

M= A

=

> Airj

o If we jump from website to website, the equilibrium distribution component
Doo(2) is the relative number of times we will visit website ¢. This has a
natural interpretation as the ‘importance’ of website i.

@ For each website 7 a list of words associated with that website is collected.
After doing this for all websites, one can make an ‘inverse’ list of which
websites contain word w. When a user searches for word w, the list of
websites that contain word is then returned, ranked according to the
importance of the site.

Hidden Markov Models (HMM)

This is a popular time series model used throughout many different fields (Machine
Learning, Statistics, Tracking, Bioinformatics and many many more).

@ A set of discrete or continuous variables
v1,...,v7r = v1.7 Which represent the @
observed time-series.
@ A set of discrete hidden variables hi.7 @
that generate the observations.
T

p(vir, hi.r) = p(vi|hy)p(hy) HP(Ut|ht)P(ht|ht—1)
t=2

p(hy = jlhi—1 = 1) = mj;, m: transition matrix

p(ve = jlhy =) = pj;, p: emission matrix

HMM: Common inference problems

Filtering Infer h; from p(h:|v1.:) which uses the observations up to time ¢
Smoothing Infer hy from p(h:|v1.7) which also uses future observations

Viterbi Infer the most likely hidden sequence hq.7 from

argmax p(hy.7|v1.T)
hi.r

Inference in Hidden Markov Models — Part |l

Belief network representation of a HMM:

As a factor graph:

fin = plwrlh) _@'@' '@ ’
fra = plhalin) @ @ @ ‘

o Filtering: carried our by passing messages up and to the right.

@ Smoothing: combine filtering messages with messages up and to the left.
Viterbi computed similarly.

Localisation example — Part |

Problem: You're asleep upstairs in your house and awoken by a burglar on the
ground floor. You want to figure out where the burglar might be based on a
sequence of noise information.

You mentally partition the ground floor into a 5 x 5 grid. For each grid position

@ you know the probability
that if someone is in that
position the floorboard will
creak

@ you know the probability
that if someone is in that
position he will bump into
something in the dark Prob. of creak Prob. of bump

@ you assume that the burglar
can move only into a
neighbor grid square with
uniform probability

Localisation example — Part |l

We can represent the scenario using a HMM @ 0 @
where G 0 H

@ The hidden variable h; represents the position of the burglar in the
grid at time ¢

he €{1,...,25}

@ The visible variable v; represents creak/bump at time ¢

v=1: no creak, no bump
v=2: creak, no bump
v=3: no creak, bump
v=4: creak, bump

Localisation example — Part Il

[
oy E
B E
B K
B EDERBER

bserved creaks and bumps for 10 time-steps

(@)

(top)
(below top) Filtering p(ht|v1.+)
(middle) Smoothing p(h¢|v1.10)

(above bottom) Most likely sequence argmax p(hy.7|v1.T)
hi.T

(bottom) True Burglar position

Natural Language Model Example — Part |

Problem: A ‘stubby finger' typist has the tendency to hit either the correct key or
a neighbouring key. Given a typed sequence you want to infer what is the most
likely word that this corresponds to.

@ The hidden variable h; represents the intended letter at time ¢

@ The visible variable v, represents the letter that was actually typed at time ¢

We assume that there are 27 keys: lower case a to lower case z and the space bar.

0.9

08

0.7

0.6

0.5

04

0.3

0.2

N<XE<E.0-0D033 _x_._TC.000TH

N<XE<CA0-0DT033 _x._T0.0D20TH

0.1

o
abcdefghijkimnopgrstuvwxyz

Transition p(hy = jlhi—1 = 17) Emission p(v; = jlhy = 14)

abcdefghijkimnoparstuvwxyz

Natural Language Model Example — Part |l

Given the typed sequence kezrninh what is the most likely word that this
corresponds to?

o Listing the 200 most likely hidden sequences (using a form of Viterbi)
@ Discard those that are not in a standard English dictionary

@ Take the most likely proper English word as the intended typed word

... and the answer is ...

