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A general purpose inference algorithm (?)

Applicability

The JTA deals with ‘marginal’ inference in multiply-connected structures.

The JTA can handle both Belief and Markov Networks.

Efficiency

The complexity of the JTA can be very high if the graph is multiply connected.

Provides an upper bound on the computational complexity.

May be that there are some problems for which much more efficient
algorithms exist than the JTA.



Clique Graph

A clique graph consists of a set of potentials, φ1(X 1), . . . , φn(Xn) each defined on
a set of variables X i. For neighbouring cliques on the graph, defined on sets of
variables X i and X j , the intersection X s = X i ∩ X j is called the separator and
has a corresponding potential φs(X s). A clique graph represents the function∏

c φc(X c)∏
s φs(X s)

Example

X 1 X 1 ∩ X 2 X 2

φ(X 1)φ(X 2)

φ(X 1 ∩ X 2)



Markov Net → Clique Graph

p(a, b, c, d) =
φ(a, b, c)φ(b, c, d)

Z

d

b

c

a

(a)

a, b, c b, c b, c, d

(b)

Figure: (a) Markov network φ(a, b, c)φ(b, c, d). (b) Clique graph representation of (a).

Clique potential assignments

The separator potential may be set to the normalisation constant Z.

Cliques have potentials φ(a, b, c) and φ(b, c, d).



Transformation

p(a, b, c, d) =
φ(a, b, c)φ(b, c, d)

Z

By summing we have

Zp(a, b, c) = φ(a, b, c)
∑
d

φ(b, c, d), Zp(b, c, d) = φ(b, c, d)
∑
a

φ(a, b, c)

Multiplying the two expressions, we have

Z2p(a, b, c)p(b, c, d) =

(
φ(a, b, c)

∑
d

φ(b, c, d)

)(
φ(b, c, d)

∑
a

φ(a, b, c)

)
= Z2p(a, b, c, d)

∑
a,d

p(a, b, c, d)

In other words

p(a, b, c, d) =
p(a, b, c)p(b, c, d)

p(c, b)

Clique potential assignments

The separator potential may be set to p(b, c).
Cliques have potentials p(a, b, c) and p(b, c, d).

The cliques and separators contain the marginal distributions.



Markov → Clique Graph

The transformation

φ(a, b, c)→ p(a, b, c)

φ(b, c, d)→ p(b, c, d)

Z → p(c, b)

The usefulness of this representation is that if we are interested in the marginal
p(a, b, c), this can be read off from the transformed clique potential.

JTA

The JTA is a systematic way of transforming the clique graph potentials so
that at the end of the transformation the new potentials contain the
marginals of the distribution.

The JTA will work by a sequence of local transformations

Each local transformation will leave the Clique representation invariant.



Absorption
Consider neighbouring cliques V and W, sharing the variables S in common. In
this case, the distribution on the variables X = V ∪W is

p(X ) = φ (V)φ (W)

φ (S)
φ (V) φ (S) φ (W)

and our aim is to find a new representation

p(X ) = φ̂ (V)φ̂ (W)

φ̂ (S)
φ̂ (V) φ̂ (S) φ̂ (W)

in which the potentials are given by

φ̂ (V) = p(V), φ̂ (W) = p(W), φ̂ (S) = p(S)
We can explicitly work out the new potentials as function of the old potentials:

p(W) =
∑
V\S

p(X ) =
∑
V\S

φ (V)φ (W)

φ (S)
= φ (W)

∑
V\S φ (V)
φ (S)

and

p(V) =
∑
W\S

p(X ) =
∑
W\S

φ (V)φ (W)

φ (S)
= φ (V)

∑
W\S φ (W)

φ (S)



Absorption

We say that the cluster W ‘absorbs’ information from cluster V. First we define a
new separator

φ∗ (S) =
∑
V\S

φ (V)

and refine the W potential using

φ∗ (W) = φ (W)
φ∗ (S)
φ (S)

φ (V) φ∗ (S) φ∗ (W)

Invariance
The advantage of this interpretation is that the new representation is still a valid
clique graph representation of the distribution since

φ (V)φ∗ (W)

φ∗ (S)
=
φ (V)φ (W)φ

∗(S)
φ(S)

φ∗ (S)
=
φ (V)φ (W)

φ (S)
= p(X )



Absorption

After W absorbs information from V then φ∗ (W) contains the marginal p(W).
Similarly, after V absorbs information from W then φ∗ (V) contains the marginal
p(V). After the separator S has participated in absorption along both directions,
then the separator potential will contain p(S).

Proof

φ∗∗ (S) =
∑
W\S

φ∗ (W) =
∑
W\S

φ (W)φ∗ (S)
φ (S)

=
∑

{W∪V}\S

φ (W)φ (V)
φ (S)

= p(S)

Continuing, we have the new potential φ∗ (V) given by

φ∗ (V) = φ (V)φ∗∗ (S)
φ∗ (S)

=
φ (V)

∑
W\S φ (W)φ∗ (S)/φ (S)

φ∗ (S)

=

∑
W\S φ (V)φ (W)

φ (S)
= p(V)



Absorption Schedule on a Clique Tree

A B

C D

E F

1→

2
→

3→

←
4

←
5

6←

7
→

8→

←
9

←
10

For a valid schedule, messages can only be passed to a neighbour when all
other messages have been received.

More than one valid schedule may exist.



Forming a Clique Tree

x1

x2x3

x4

(a)

x1, x4

x2, x4x3, x4

x4x4

x4

(b)

p(x1, x2, x3, x4) = φ(x1, x4)φ(x2, x4)φ(x3, x4)

The clique graph of this singly-connected Markov network is
multiply-connected, where the separator potentials are all set to unity.

For absorption to work, we need a singly-connected clique graph.



Forming a Clique Tree

p(x1, x2, x3, x4) = φ(x1, x4)φ(x2, x4)φ(x3, x4)

Reexpress the Markov network in terms of marginals. First we have the relations

p(x1, x4) =
∑
x2,x3

p(x1, x2, x3, x4) = φ(x1, x4)
∑
x2

φ(x2, x4)
∑
x3

φ(x3, x4)

p(x2, x4) =
∑
x1,x3

p(x1, x2, x3, x4) = φ(x2, x4)
∑
x1

φ(x1, x4)
∑
x3

φ(x3, x4)

p(x3, x4) =
∑
x1,x2

p(x1, x2, x3, x4) = φ(x3, x4)
∑
x1

φ(x1, x4)
∑
x2

φ(x2, x4)

Taking the product of the three marginals, we have

p(x1, x4)p(x2, x4)p(x3, x4)

= φ(x1, x4)φ(x2, x4)φ(x3, x4)

(∑
x1

φ(x1, x4)
∑
x2

φ(x2, x4)
∑
x3

φ(x3, x4)

)2

︸ ︷︷ ︸
p(x4)2



Forming a Clique Tree
This means that the Markov network can be expressed in terms of marginals as

p(x1, x2, x3, x4) =
p(x1, x4)p(x2, x4)p(x3, x4)

p(x4)p(x4)

Hence a valid clique graph is also given by

x1, x4

x2, x4x3, x4

x4x4

x4

x1, x4

x2, x4x3, x4

x4x4

If a variable (here x4) occurs on every separator in a clique graph loop, one
can remove that variable from an arbitrarily chosen separator in the loop.

Provided that the original Markov network is singly-connected, one can always
form a clique tree in this manner.



Junction Tree

dce

abc

cf

eg eh

c c

e e

Running Intersection Property

A Clique Tree is a Junction Tree if, for each pair of nodes, V and W, all
nodes on the path between V and W contain the intersection V ∩W.

Any singly-connected Markov Network can be transformed into a Junction
Tree.

Thanks to the running intersection property, local consistency of marginals
propagates to global marginal consistency.



Belief Net → Markov Net

c

a b

d

e f

g h

c

a b

d

e f

g h

Moralisation
Form a link between all unmarried parents.



Markov Net → Junction Tree

dce

abc

cf

eg eh

c

c

c

e e

e

dce

abc

cf

eg eh

c c

e e

Form the clique graph

Identify a maximal weight spanning tree of the clique graph. (The weight of
the edge is the number of variables in the separator)



Absorption

c

a b

d

e f

g h

dce

abc

cf

eg eh

c c

e e

Assign potentials to JT cliques.

φ (abc) = p(a)p(b)p(c|a, b), φ (dce) = p(d)p(e|d, c)
φ (cf) = p(f |c), φ (eg) = p(g|e), φ (eh) = p(h|e)

All separator potentials are initialised to unity. Note that in some instances it
can be that a junction tree clique is assigned to unity.

Carry out absorption using a valid schedule.

Marginals can then be read of the transformed potentials.



Multiply-Connected Markov Nets
a b

cd

p(a, b, c, d) = φ(a, b)φ(b, c)φ(c, d)φ(d, a)

Let’s first try to make a clique graph. We have a choice about which variable first
to marginalise over. Let’s choose d:

p(a, b, c) = φ(a, b)φ(b, c)
∑
d

φ(c, d)φ(d, a)

We can express the joint in terms of the marginals using

p(a, b, c, d) =
p(a, b, c)∑

d φ(c, d)φ(d, a)
φ(c, d)φ(d, a)

Furthermore,

p(a, c, d) = φ(c, d)φ(d, a)
∑
b

φ(a, b)φ(b, c)

Plugging this into the above equation, we have

p(a, b, c, d) =
p(a, b, c)p(a, c, d)∑

d φ(c, d)φ(d, a)
∑
b φ(a, b)φ(b, c)

=
p(a, b, c)p(a, c, d)

p(a, c)
.



Induced representation

a b

cd

a b

c

a b

cd

left An undirected graph with a loop.

middle Eliminating node d adds a link between a and c in the marginal
subgraph.

right Induced representation of the joint.

below Junction tree.

abc acdac



Triangulation

In a triangulated graph, every loop of length 4 or more must have a chord (a
shortcut). Such graphs are called decomposable.

a b c

def

a b c

def

Left: a non-decomposable graph. Right: triangulated version.



Triangulation via Variable Elimination

Repeat:

Select any non-deleted node x in the graph

Add links to all the neighbours of x.

Delete node x is then deleted.

Until all nodes have been deleted

This procedure guarantees a triangulated graph. There are many other
triangulation algorithms. No known way to find the ‘best’ triangulation (the one
with the smallest cliques).
Perfect elimination order. Let the n variables in a Markov network be ordered
from 1 to n. The ordering is perfect if, for each node i , the neighbours of i that
are later in the ordering and i itself form a maximal clique. This means that when
we eliminate variables in sequence from 1 to n, no additional links are induced in
the remaining marginal graph.
A graph which admits a perfect elimination order is decomposable and vice versa.



Triangulation via Variable Elimination

a b c d e

f g h i

j k

l

a b c d e

f g h i

j k

l

a b c d e

f g h i

j k

l



Triangulation via Variable Elimination

a b c d e

f g h i

j k

l

a b c d e

f g h i

j k

l

a b c d e

f g h i

j k

l

a b c d e

f g h i

j k

l



The Junction Tree

abf bcfg cdhi deibf di

cfgj chik

cjk

jkl

cfg chi

cj ck

jk

This satisfies the running intersection property.



The JTA

Moralisation Marry the parents. This is required only for directed distributions.
Note that all the parents of a variable are married together – a
common error is to marry only the ‘neighbouring’ parents.

Triangulation Ensure that every loop of length 4 or more has a chord.

Junction Tree Form a junction tree from cliques of the triangulated graph,
removing any unnecessary links in a loop on the cluster graph.
Algorithmically, this can be achieved by finding a tree with maximal
spanning weight with weight wij given by the number of variables in
the separator between cliques i and j.

Potential Assignment Assign potentials to junction tree cliques and set the
separator potentials to unity.

Message Propagation Carry out absorption until updates have been passed along
both directions of every link on the JT.

The clique marginals can then be read off from the JT.



Example

c

a

b d

e f g

h i

c

a

b d

e f g

h i

Left: Original loopy Belief Network.
Right: The moralisation links (dashed) are between nodes e and f and between
nodes f and g. The other additional links come from triangulation. The clique size
of the resulting clique tree (not shown) is four.



Remarks

For discrete variables, the computational complexity of the JTA is exponential
in the largest clique size.

There may exist more efficient algorithms in particular cases. One particular
special case is that of marginal inference for a binary variable MRF on a
two-dimensional lattice containing only pure quadratic interactions. In this
case the complexity of computing a marginal inference is O(n3) where n is
the number of variables in the distribution. This is in contrast to the
pessimistic exponential complexity suggested by the JTA.

One might think that the only class of distributions for which essentially a
linear time algorithm is available are singly-connected distributions. However,
there are decomposable graphs for which the cliques have limited size meaning
that inference is tractable. For example an extended version of the
‘ladder’graph has a simple induced decomposable representation. These
structures are hyper trees.

By replacing summation with maximisation, we can perform max-absorption
to compute the most likely joint state – this is the union of the most likely
clique states.


