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Abstract. We determine the structure of the circular handle decompositions
of the family of free genus one knots. Namely, if k is a free genus one knot,

then the handle number h(k) = 0, 1 or 2, and, if k is not fibered (that is,

if h(k) > 0), then k is almost fibered. For this, we develop practical techniques
to construct circular handle decompositions of knots with free Seifert surfaces

in the 3–sphere (and compute handle numbers of many knots), and, also, we

characterize the free genus one knots with more than one Seifert surface. These
results are obtained through analysis of spines of surfaces on handlebodies.

Also we show that there are infinite families of free genus one knots with
either h(k) = 1 or h(k) = 2.

1. Introduction

In the study of the topology of a given 3–manifold, M , it has been useful to
consider regular real-valued Morse functions f : M → R where M has some smooth
structure. A regular real-valued Morse function on M corresponds to a handle
decomposition of M of the form M = b0 ∪ B1 ∪ P1 ∪ · · · ∪ Br ∪ Pr ∪ b3 where b0
is a collection of 0-handles, Bj is a collection of 1–handles, Pj is a collection of
2–handles, and b3 is a collection of 3–handles, in such a way that the i–handles
of the decomposition are neighbourhoods of the critical points of index i of the
Morse function (j = 1, . . . , r, and i = 0, 1, 2, 3). In a celebrated paper ([14]),
M. Scharlemann and A. Thompson introduced the concept of thin position for 3–
manifolds; their idea is to build the manifold as described above (that is, step by
step: adding to the set b0 the set B1, and then adding P1, and then adding B2, and
so on) with a sequence of selected sets of 1–handles and sets of 2–handles chosen
to keep the boundaries of the intermediate steps as simple as possible.

Now if a 3–manifold M satisfies H1(M ; Q) 6= 0, then there are essential (non-
nulhomotopic) regular Morse functions f : M → S1, and one can always find this
kind of functions having only critical points of index 1 and 2 (see Section 2.2). Such
a function corresponds to a circular handle decomposition M = F × [0, 1] ∪ B1 ∪
P1 ∪ · · · ∪ Br ∪ Pr where F is a properly embedded surface in M , Bj is a collec-
tion of 1–handles, and Pj is a collection of 2–handles (the handles are glued along,
say, F × {1}), and, as above, the set of i–handles of the decomposition correspond
to the critical points of index i of the Morse function. With this kind of circular
handle decompositions we may also require that the intermediate steps be as simple
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as possible: that requirement acquires the notion of thin position for circular han-
dle decompositions. The existence of these decompositions gives rise to numerical
topological invariants such as the (circular) handle number, h(M) =

∑r
1=1 #(Bi)

where the sum
∑

#(Bi) is minimal among all circular handle decompositions; also,
when the decomposition is in thin position, we obtain the circular width, cw(M)
(See Section 2.4).

Outstanding examples of manifolds that admit circular handle decompositions,
are the exteriors of links in S3. In this case the interesting intermediate surfaces
in the decomposition are Seifert surfaces for the given link (these intermediate
surfaces have no closed components, and, if the decomposition is in thin position,
they are a sequence of Seifert surfaces which are alternately incompressible and
weakly incompressible. See [9], Theorem 3.2, where there is a statement for knots,
but its proof works verbatim for links).

Then it is interesting to find explicit constructions of circular handle decompo-
sitions of the exterior of a given link which are minimal (that is, that realize the
handle number), or that are in thin position. In [2], although in other context,
explicit minimal circular handle decompositions of the exterior of the 250 knots in
Rolfsen’s table are given (of these knots, 117 are fibered, and 132 have handle num-
ber one. The Perko knot, 10161 = 10162 is fibered). As far as we know, there are no
other previously published explicit constructions of circular handle decompositions
of exteriors of links in the 3–sphere.

In this paper we are interested mainly in the circular handle structures of the
family of free genus one knots:

In the first part of this work (Section 3) we develop techniques to construct
explicit circular decompositions of link exteriors for links that admit a free Seifert
surface; these decompositions are interesting, of course, when the free Seifert surface
used in the construction is of minimal genus for the link. The information needed
to construct these decompositions for the exterior of a given link is encoded in some
spine of a free Seifert surface of the link. In this sense, the techniques developed in
Section 3 (and through all this paper) could be regarded as elements for a possible
theory of spines of surfaces on handlebodies that might be worthy of consideration.
As applications we construct minimal circular decompositions for all rational knots
and links and, also, for a family of pretzel knots, namely, pretzel knots of the
form P (±3, q, r) with |q|, |r| odd integers ≥ 3. These circular decompositions for
both families of links are all minimal and have handle number one; they are also in
thin position, giving also the circular width of each link considered. This last family
gives examples of non-fibered knots whose handle number is strictly less than their
tunnel number (Remark 3.11). Also, it is shown that free genus one knots have
handle number ≤ 2 (Corollary 3.6).

Secondly (Section 4), we construct circular handle decompositions for the exte-
riors of all pretzel knots of the form P (p, q, r) with |p|, |q|, |r| odd integers ≥ 5, and
we show that these decompositions are minimal with handle number two (Theo-
rem 4.1), and are also in thin position, giving the circular width equal to 6 for each
of these knots. These examples answer a question posed in [11] (Remark 4.5).
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Next, in Section 5, we give a characterization of the free genus one knots that
admit at least two different (non-parallel) Seifert surfaces of genus one. This char-
acterization is given in terms of the existence of a special spine for the given genus
one free Seifert surface of the knot (see Theorem 5.2).

If the exterior of a link ` in S3 admits a circular decomposition of the form E(`) =
F × [0, 1] ∪B1 ∪ P1, and this decomposition is in thin position, we say that ` is an
almost fibered link.

Using the characterization given in Section 5 we show, in the final part of this
work, that all (non-fibered) free genus one knots are almost fibered (Theorem 6.7).

It follows from the proof of Theorem 6.7, that the free genus one knots with
handle number two have a unique minimal Seifert surface (that is, free genus one
knots with at least two genus one Seifert surfaces have handle number one). It is
an interesting open problem to determine the family of free genus one knots with
handle number two.

2. Preliminaries

Unless explicitly stated, we will use the word ‘knot’ for a knot or a link in S3.
That is, we will emphasize connectedness if needed. Otherwise, we will admit
non-connected knots.

Let X be a manifold and let Y ⊂ X be a sub-complex. We write E(Y ) =
X −N (Y ) for the exterior of Y in X where N (Y ) is a regular neighbourhood of
Y in X.

Let X be a manifold and let Y ⊂ X be a properly embedded submanifold. Y is
called ∂–parallel in X, or parallel into ∂X, if there is an embedding e : (Y, ∂Y )×I →
(X, ∂X), such that e0 : Y → Y is the identity, and e1(Y ) ⊂ ∂X. If Y is ∂–parallel in
X with embedding e : (Y, ∂Y )×I → (X, ∂X), then the submanifold e(Y×I) is called
a ∂–parallelism for Y . Notice that if Y is disconnected with components Y1, . . . , Yn,
and Y is ∂–parallel in X with a ∂–parallelism W , then W is a disjoint union of
∂–parallelisms W1, . . . ,Wn for Y1, . . . , Yn, respectively.

2.1. Seifert Surfaces. Let k ⊂ S3 be a knot, and let F be a Seifert surface for k;
that is, F is an orientable surface and ∂F = k. Then, by drilling out a small
neighbourhood, N (k), of k, the surface F̂ = F ∩ E(k) is a properly embedded
surface in E(k), the exterior of k in S3, and one may assume that ∂F̂ is parallel
to k in N (k). Usually, we identify F with F̂ ; but, more appropriately, we start
with F ⊂ E(k) a Seifert surface for k. Seifert surfaces may be disconnected, but
they are not allowed to contain closed components. The genus g(k) of a knot k is
the minimal genus among all Seifert surfaces for k.

A surface F ⊂ S3 is called free if E(F ) is a handlebody. The free genus of a
knot k, gf (k), is the minimal genus among all free Seifert surfaces for k.

In this work we will be interested mainly in free genus one knots.

2.2. Handle decompositions of rel ∂ Cobordisms. Let W be a cobordism rel ∂
between surfaces with no closed components, ∂+W and ∂−W . A moderate handle
decomposition of W is a decomposition of the form W ∼= ∂+W × I ∪ (1–handles) ∪
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(2–handles). Given W , a cobordism rel ∂ between surfaces with no closed compo-
nents, ∂+W and ∂−W , it is easy to find a moderate decomposition as above by
considering a triangulation of the exterior E(∂+W ) = W −N (∂+W ).

Given a cobordism W and a moderate handle decomposition for W , one can
find a regular Morse function f : W → I which realizes the handle decomposition
of W . That is, f only has critical points of index 1 and 2, and neighbourhoods of
the critical points of f correspond to the 1 and 2–handles of W , and the preimage
of each regular level of f is a properly embedded surface in W . We will call such a
Morse function a moderate Morse function.

2.3. Circular decompositions. Let k be a knot in S3. Since H1(E(k)) is a free
Abelian group of positive rank, we can always find an essential (non-nulhomotopic)
moderate Morse function f : E(k) → S1. Any such Morse function, as in Subsec-
tion 2.2, induces a decomposition

E(k) = (F × I) ∪B ∪ P

where F ⊂ E(k) is a Seifert surface for k, B is a set of n 1–handles glued along,
say, F × {1}, and P is a set of the same number, n, of 2–handles glued along the
same side.

We call such a decomposition a circular handle decomposition of E(k) based on F ,
and write h(F ) = n, the handle number of F , where n is the minimal number of 1–
handles among all circular handle decompositions of E(k) based on F . The circular
handle number of k, or simply the handle number of k, h(k), is the minimal h(F )
among all Seifert surfaces F ⊂ E(k). Notice that h(k) = 0 if and only if k is a
fibered knot.

By rearranging the critical points of a moderate Morse function f : E(k)→ S1,
we can thin a circular handle decomposition of E(k):

E(k) = (F × I) ∪B1 ∪ P1 ∪B2 ∪ P2 ∪ · · · ∪B` ∪ P`

where Bi is a set of 1–handles glued along F ×{1}, and Pi is a set of 2–handles, i =
1, . . . , ` (of course, it is not always possible to thin a given circular handle decom-
position).

For i = 1, . . . , `, the set Wi = (F × [ 1
2 , 1]) ∪B1 ∪ P1 ∪ · · · ∪Bi gives a moderate

handle decomposition for the rel ∂ cobordism Wi with ∂+Wi = F×{ 1
2}. Write Si =

∂−Wi. Now we define

c(Si) =
ni∑
j=1

(1− χ(Gi,j))

where χ stands for Euler characteristic, and Gi,1, . . . , Gi,ni
are the components of Si

(Notice that there are no closed components of Si for, F has no closed components
and the handle decomposition is moderate). Order the surfaces Sσ(1), Sσ(2), . . . , Sσ(`)

in such a way that c(Sσ(i)) ≥ c(Sσ(i+1)) for i = 1, . . . , `− 1, where σ is a permuta-
tion in the symbols 1, . . . , `. Then the circular width of this decomposition is the
tuple (c(Sσ(1)), c(Sσ(2)), . . . , c(Sσ(`))). The circular width of k, cw(k), is the mini-
mal circular width, with respect to lexicographic order, among all thinned circular
decompositions of E(k) based on all possible Seifert surfaces for k.



CIRCULAR HANDLE DECOMPOSITIONS OF FREE GENUS ONE KNOTS 5

Let k ⊂ S3 be a knot such that its circular width has the form cw(k) = (n).
Then we write cw(k) = n, or cw(k) ∈ Z. If k is a non-fibered knot and cw(k) ∈ Z,
then k is said to be an almost fibered knot.

Remark 2.1. Equivalence of knots. Let k, ` ⊂ S3 be two knots. If the pairs (S3, k)
and (S3, `) are homeomorphic, then their exteriors also are homeomorphic, E(k) ∼=
E(`); and therefore, the exteriors of k and ` have homeomorphic handle decompo-
sitions. We regard two knots as being equivalent if their corresponding pairs are
homeomorphic.

Remark 2.2. Construction of circular decompositions. To describe (or, rather,
to actually construct) a decomposition

E(k) = (F × I) ∪B ∪ P

where B is a set of 1–handles, and P is a set of 2–handles, it is convenient to write

E(k) = (F × [ 1
2 , 1]) ∪B ∪ P ∪ (F × [0, 1

2 ]).

Then to obtain (describe) this circular decomposition we can either

(1) Start with a regular neighbourhoodN (F ) of F in E(k). Then add a number
of 1–handles to N (F ) (the elements of B) on one side, say F × {1}, and
then add the same number of 2–handles (the elements of P ) on the same
side.
The complement of the union above is a regular neighbourhood of F ×{0}
in E(k). Or

(2) Start with E(F ), the exterior of F in E(k). Then drill a number of 2–
handles (the elements of B) out of E(F ). Now drill the same number of
1–handles (the elements of P ) out of E(F ).
Here one should be careful that the drilled out 2–handles intersect ∂E(F )
on the same side, say F ×{1}, and that the following drilled out 1–handles
intersect the remaining boundary of E(F ) on the same side.
The result of this drilling is a regular neighbourhood of F × {0} in E(k).

Of course, in (1) above, ‘N (F )’ stands for F×[ 1
2 , 1], and in (2), ‘E(F )’ stands for

the exterior E(k)− F × [ 1
2 , 1]. To describe a thinned circular decomposition, one

proceeds similarly, but now there will be several steps. Note that, in this kind of
decomposition, a thinned decomposition, the number of 1–handles and the number
of 2–handles at each step are not necessarily the same.

We emphasize that the main use of the program outlined in (1) is to describe an
explicit circular handle decomposition of some given example.

Remark 2.3. Decompositions of non almost fibered knots. Now start with a
circular decomposition

E(k) = (F × [ 1
2 , 1]) ∪B1 ∪ P1 ∪B2 ∪ P2 ∪ · · · ∪B` ∪ P` ∪ (F × [0, 1

2 ])

which realizes cw(k), the circular width of k. For i = 1, . . . , `, the set Vi = (F ×
[ 1
2 , 1]) ∪ B1 ∪ P1 ∪ · · · ∪ Bi ∪ Pi gives a moderate handle decomposition for the

rel ∂ cobordism Vi with ∂+Vi = F × { 1
2}. Write Ti = ∂−Vi. Then the ` disjoint

surfaces T1, T2, . . . , T` = F are incompressible in E(k) and are non-parallel by pairs
(see [9], Theorem 3.2. As noted in the Introduction, the theorem also holds for
non-connected knots). That is,
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If k is non fibered and not an almost fibered knot, then k has at least two non-
parallel incompressible Seifert surfaces.

Remark 2.4. Decompositions of pairs. Let k ⊂ S3 be a knot with Seifert
surface F ⊂ E(k). There is a copy of F , F0 ⊂ ∂E(F ), such that E(F ) is a cobordism
rel ∂ between F0 = ∂+E(F ) and ∂−E(F ). We commit an abuse of notation by
identifying F with F0. To find a circular decomposition of E(k) based on F is the
same as finding a moderate handle decomposition of the rel ∂ cobordism E(F ). A
handle decomposition of the pair (E(F ), F ) is, by definition, a handle decomposition
of the rel ∂ cobordism E(F ).

Now let ` ⊂ S3 be another knot with Seifert surface G ⊂ E(`). If there is a
homeomorphism of pairs (E(F ), F ) ∼= (E(G), G), then the handle decompositions
of the pairs (E(F ), F ) and (E(G), G) (as well as those of E(F ) and E(G) as rel ∂
cobordisms) are in 1-1 correspondence via the given homeomorphism. That is:

To find circular decompositions of E(k) based on F , we need only to construct
moderate handle decompositions of the homeomorphism class of the pair (E(F ), F ).
In particular, it is not necessary to regard E(F ) as embedded in S3.

This remark is very helpful in the search of circular decompositions.

2.4. Spines. Let X be either a handlebody or a surface with boundary. A spine
of X is a graph Γ ⊂ X such that X is a regular neighbourhood of Γ. In this
work we mainly consider spines of the form Γ ∼=

∨n
i=1 S

1, a wedge of circles. We
write Γ = a1 ∨ · · · ∨ an to emphasize the circles involved, and we assume that the
curves ai carry a given orientation. Notice that it is allowed for Γ to be a single
simple closed curve.

Let k ⊂ S3 be a knot, and let F ⊂ E(k) be a Seifert surface for k. A regular
neighbourhood N (F ) of F in E(k) admits a product structure N (F ) = F × I
where ∂F × I = N (k) ∩ N (F ). A spine Γ ⊂ F × {0}, Γ ∼=

∨n
i=1 S

1, is also a
spine for N (F ), and the graph Γ induces a product structure N (F ) = G × I,
where, say, G× {0} is a regular neighbourhood of Γ in ∂N (F ) (here, of course, G
is isotopic to F in ∂N (F )). A spine Γ ⊂ F × {0} is also a graph Γ ⊂ ∂E(F ). A
spine for F , Γ ⊂ F ×{0} (or Γ ⊂ F ×{1}), is called a spine for F on ∂N (F ). Also,
we say that Γ is a spine for F on ∂E(F ).

If Γ is a spine for F on ∂E(F ), and G is a regular neighbourhood of Γ in ∂E(F ),
then a handle decomposition for the pair (E(F ),Γ) is, by definition, a handle de-
composition for the pair (E(F ), G).

Let Γ = a1 ∨ · · · ∨ an be a spine for F on ∂E(F ), and let t(ai) be a Dehn twist
on F along the curve ai. If Γ̃ is the graph obtained from Γ by replacing the curve aj
by the curve t(ai)(aj), then Γ̃ is also a spine for F . The graph Γ̃ is called the spine
for F obtained from Γ by sliding aj along a±1

i (i, j ∈ {1, . . . , g}).

Remark 2.5. Notice that if Γ̃ is another spine for F on ∂E(F ), and G̃ is a regular
neighbourhood of Γ̃ in ∂E(F ), then the pairs (E(F ),Γ) and (E(F ), Γ̃) usually
are not homeomorphic, but the pairs (E(F ), F ) and (E(F ), G̃) are homeomorphic.
Thus:

To find circular decompositions of E(k) based on F , we need only to construct
moderate handle decompositions of the homeomorphism class of a pair (E(F ),Γ)
for some spine Γ for F on ∂E(F ).
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Remark 2.6. Let F ⊂ S3 be a connected orientable surface with boundary k = ∂F .
If a spine Γ for F on ∂N (F ) is also a spine for E(F ), then k is a fibered knot with
fiber F . Indeed, E(F ) is a handlebody (for it is an irreducible 3–manifold with
connected boundary, and with free fundamental group), and both N (F ) and E(F )
admit a product structure of the form G× I, where G is a regular neighbourhood
of Γ in ∂N (F ) = ∂E(F ).

2.5. Whitehead diagrams. Let H be a genus g handlebody, and let x1, . . . , xg be
a system of meridional disks for H. The exterior E(x1∪· · ·∪xg) is a 3–ball with 2g
fat vertices x1, x̄1, . . . , xg, x̄g on its boundary, where xi = xi×{0} and x̄i = xi×{1}
are the copies of xi in the product structure N (xi) = xi × I ⊂ H, i = 1, . . . , g.

There is a 1-1 correspondence between isotopy classes of systems of meridional
disks {x1, . . . , xg} for H, and homotopy classes of spines of the form a1∨· · · ,∨ag ⊂
H such that #(ai∩xi) = 1, and ai∩xj = ∅ for i 6= j, i = 1, . . . , j. It is convenient to
commit an abuse of notation, and write both {x1, . . . , xg} for a meridional system
of disks for H, and {x1, . . . , xg} for the corresponding basis of π1(H) represented
by the curves a1, . . . , ag in the 1-1 correspondence above. Throughout this paper
we adhere to this abuse of notation.

A graph Γ = a1 ∨ · · · ∨ an ⊂ ∂H intersects E(x1 ∪ · · · ∪ xg) in a set of sub-
arcs of the curves ai; some of these arcs intersect in the base point of Γ. These
arcs together with x1, x̄1, . . . , xg, x̄g form a graph G with 2g fat vertices immersed
on ∂E(x1∪· · ·∪xg). The base point of Γ appears in the drawing on ∂E(x1∪· · ·∪xg)
as the intersection of some edges of G, but the base point of Γ is not considered a
vertex of G. We require that the graph G has no loops, that is, that there are no
edges with ends in the same fat vertex of G. In our examples, we will be able to
realize this assumption —no loops in G— through the use of some isotopies of H.
For each i we number the ends of the arcs in xi and x̄i in such a way that the
gluing homeomorphisms, which recover H from E(x1 ∪ · · · ∪ xg), identify equally
numbered points. The immersion of the graph G in ∂E(x1∪· · ·∪xg), together with
these numberings, is called the Whitehead diagram of the pair (H,Γ) associated to
the system of meridional disks x1, . . . , xg ⊂ H (see Figure 1). The graph G is called
the Whitehead graph of the corresponding Whitehead diagram.

Let X be a graph, and let e, f be two edges of X; we say that e and f are parallel
if they connect the same pair of vertices of X. The simple graph associated to X is
the graph obtained from X by replacing each parallelism class of edges of X by a
single edge, and deleting each loop in X (if any).

If X is a connected graph, a vertex v of X is called a cut vertex of X if X −{v}
is not connected. Notice that a loop-less graph X contains a cut vertex if and only
if the simple graph associated to X contains a cut vertex.

Let F be a free group with basis Y , and let A be a set of cyclically reduced
words on Y ∪ Y −1, regarded as elements of F . The genuine Whitehead graph
of A is the graph, Γ, with vertex set Y ∪ Y −1, and if α ∈ A, when cyclically α
contains the word of length two v1v2, then there is an edge in Γ from v1 to v−1

2

for, v1, v2 ∈ Y ∪ Y −1. If α is of length 1, α = v, then there is an edge from v
to v−1. If A is a set of elements of F , we can replace A with a set A′ of cyclically
reduced words representing the conjugacy classes of the elements of A, and then
the genuine Whitehead graph of A is, by definition, the genuine Whitehead graph
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Figure 1. A Whitehead diagram associated to the exterior of the
pretzel knot p(5, 5, 5).

of A′. The genuine Whitehead graph of a set of elements of F is regarded as being
embedded in 3–space and also contains no loops.

Let F be a free group and let A be a set of elements of F . Then A is called
separable if there exists a non-trivial splitting F ∼= F1 ∗ F2 such that each α ∈ A
represents, up to conjugacy, an element of Fj for some j.

Theorem 2.7 (Theorem 2.4 of [15]). Let A be a set of elements of a free group F
with genuine Whitehead graph Γ. If Γ is connected and if A is separable in F , then
there is a cut vertex in Γ.

The following result follows from Theorem 2.7 and is included here for future
reference.

Corollary 2.8. Let Γ = a1∨· · ·∨an be a wedge of n simple closed curves embedded
in the boundary of a handlebody H. Assume that for some Whitehead diagram of
the pair (H,Γ), the Whitehead graph of this diagram is connected and has no cut
vertex. Then Γ intersects every essential disk of H.
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Proof. LetG be the Whitehead graph of the pair (H,Γ) with respect to some system
of meridional disks {x1, . . . , xg}, such that G has no cut vertex and is connected.
In particular G has no loops. If we regard G as a graph G′ embedded in 3–space
so that the base point of Γ vanishes, then G′ is the genuine Whitehead graph
of the set of elements of π1(H) represented by {a1, . . . , an} with respect to the
basis {x1, . . . , xg}. Since G is connected and has no cut vertex, it follows that G′ is
also connected and has no cut vertex (recall that the base point of Γ is not part of G;
then G and G′ are isomorphic graphs). If there is an essential disk in H disjoint
with Γ, then the set of elements of π1(H) represented by {a1, . . . , an} clearly is
separable, and by Theorem 2.7, G′ has a cut vertex or is disconnected. Since G′

is connected and has no cut vertex, it follows that Γ intersects every essential disk
of H.

�

2.6. Handle slides. Handle slides in a handlebody are conveniently visualized
when ‘translated’ into a Whitehead diagram. Figure 2 shows the effect of sliding
the handle corresponding to the disk x2 along the handle corresponding to x1. But,
of course, in the final step, the meridional disks x1, x̄1, x2, x̄2 in the drawing are no
longer the same disks, but are their images after the handle slide in the handlebody
(The effect of such a handle slide in the fundamental group of the handlebody is a
Whitehead automorphism. See [15]).

2.6.1. ∂–parallel arcs in handlebodies. Let k ⊂ S3 be a knot, and let F ⊂ E(k) be
a free Seifert surface for k. Also let Γ be a spine for F on ∂E(F ). In Remark 2.2 (2)
a program is outlined to construct a circular decomposition for E(k). It starts by
drilling some 2–handles out of E(F ) disjoint with F . A 2–handle P ⊂ E(F ) is a
product P = D2×I such that (D2×I)∩∂E(F ) = D2×{0, 1}, and it is determined
by its ‘co-core’ γ = {0}×I. This co-core, γ, can be visualized in E(F ) as a properly
embedded arc with ends disjoint with Γ.

Given two properly embedded arcs γ and γ′ in E(F ) disjoint with Γ, if the
triples (E(F ),Γ, γ) and (E(F ),Γ, γ′) are homeomorphic, then the pairs (E(γ),Γ)
and (E(γ′),Γ) are homeomorphic, and, therefore, have homeomorphic handle de-
compositions. In this sense, we say that γ and γ′ induce homeomorphic handle
decompositions of (E(F ),Γ). Also we say, as an abuse of language, that γ and γ′

are equivalent 2–handles.
Let k be a knot and let F ⊂ E(k) be a free Seifert surface for k. To exhibit

a one-handled decomposition of E(k) based on F , we may follow the program
outlined in Remark 2.2 (2). We consider a properly embedded arc γ ⊂ E(F )
disjoint with F × {0}. If the arc γ corresponds to the single 2–handle to be drilled
out of E(F ), then γ is called the arc of the handle decomposition. In this case we
know that γ is parallel into ∂E(F ) (see Corollary 4.3 below).

Consider a system of meridional disks x1, . . . , xg ⊂ E(F ). If the arc γ is ∂–
parallel into ∂E(F ), let z be a ∂–parallelism disk for γ. After an isotopy of
E(F ) which keeps Γ fixed point-wise, we may assume that z is disjoint with the
disks x1, . . . , xg. Then γ can be visualized in the Whitehead diagram of (E(F ),Γ),
with respect to x1, . . . , xg ⊂ E(F ), as a properly embedded arc in E(x1 ∪ · · · ∪ xg)
disjoint with G, where G is the corresponding Whitehead graph. After drilling
out the 2–handle P , which is a regular neighbourhood of γ, we are ‘adding a new
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Figure 2. A handle slide.

handle’ to E(F ); that is, the exterior E(γ) ⊂ E(F ) is homeomorphic to E(F )
plus one 1–handle. We obtain a Whitehead diagram for (E(γ),Γ) with respect to
x1, . . . , xg, z, adding two fat vertices z and z̄ as in Figure 3.

This new diagram may contain a cut vertex v. When there is a cut vertex v in G,
this vertex decomposes the graph G into two non-trivial graphs X1 and X2. One of
these graphs, say X1, does not contain v̄. Then we can slide the part corresponding
to graph X1 along the handle defined by disk v. If, after sliding, there appear cut
vertices, we continue sliding along some cut vertex on and on. See Figures 4 and 5.
Since each such handle slide lowers the ‘complexity’ of the graph, that is, the sum
of all valences of the fat vertices of the corresponding Whitehead graph, eventually
we end up with, either:

(1) A disconnected diagram. See the last drawing of Figure 5. Then there
are obvious essential disks in E(γ) disjoint with Γ (more precisely, disjoint
with the image of Γ on the diagram after the slides); the boundary of
these essential disks are curves that separate the components of the current
Whitehead graph. If a neighbourhood of one of these disks is a 1–handle B
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inside E(γ), after drilling out B, either E(γ∪B) is a regular neighbourhood
of F = F × {0}, as the last drawing in Figure 5 where the disk labeled x1

corresponds to B, and we have found a circular one-handled decomposition
of E(k) based on F according to the program outlined in Remark 2.2 (2). Or
we have to drill out yet another 2–handle from E(F ) (to construct possibly
a decomposition with more than one 1–handle), or we have to restart the
program choosing a different first 2–handle to drill out.

Or we are left with:
(2) A connected diagram with no cut vertices, and we cannot go on with this

plan. By Corollary 2.8, the chosen arc is not part of a one-handled circular
decomposition. To continue the program in Remark 2.2 (2), we have to drill
out yet another 2–handle from E(F ) (to construct possibly a decomposition
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Figure 5

with more than one 1–handle), or we have to restart the program choosing
a different first 2–handle to drill out.
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Now let γ and γ′ be two ∂–parallel properly embedded arcs in E(F ) disjoint
with Γ, with ∂–parallelism disks z and z′, respectively; let {x1, . . . , xg} be a merid-
ional system of disks for E(F ), and let G be the corresponding Whitehead graph
with respect to this system of disks. Then, by an isotopy of E(F ), we may assume
that z and z′ are contained in E(x1 ∪ · · · ∪ xg) and (the images of) γ and γ′ are
disjoint with G.

Assume that for two faces of G, that is, two connected components A,B ⊂
∂E(x1 ∪ · · · ∪ xg) − G, the face A contains an endpoint of γ and one of γ′, and
the face B contains the other two endpoints of γ and γ′. Then there is an isotopy
of E(x1 ∪ · · · ∪ xg) that fixes point-wise G and sends γ onto γ′. Such an isotopy
exists for, being γ and γ′ ∂–parallel, they are unknotted properly embedded arcs in
the 3–ball E(x1∪· · ·∪xg), and the isotopy can be chosen to fix G, for the endpoints
of the arcs are, by pairs, in components of ∂E(x1 ∪ · · · ∪ xg) − G. Then we see
that a class of ‘equivalent’ 2–handles in the Whitehead diagram of (E(F ),Γ) with
respect to x1, . . . , xg is determined by pairs of faces of G in ∂E(x1 ∪ · · · ∪ xg) (and
conversely). That is, for ∂–parallel properly embedded arcs γ, γ′ ⊂ E(x1∪· · ·∪xg),
the triples (E(x1 ∪ · · · ∪ xg), G, γ) and (E(x1 ∪ · · · ∪ xg), G, γ′) are homeomorphic
if and only if γ and γ′ connect the same pair of faces of G.

This is a very useful fact. To search for a one-handled decomposition, one must
only test a finite number of ∂–parallel arcs in some Whitehead diagram, and an-
alyze as above: there are as many ∂–parallel arcs to check as pairs of faces of the
corresponding Whitehead graph.

We end this section with some definitions. Assume the arc γ is boundary parallel
into ∂E(F ). Let z be a ∂–parallelism disk for γ such that ∂z = γ ∪ γBz , where γBz
is an arc in ∂E(F ). Then, after a small isotopy of z, if necessary, γBz intersects
the edges of Γ transversely in a finite number of points. If e1, . . . , en are the edges
of Γ that intersect γBz and each ei intersects only once with γBz , we say that γ
encircles the edges e1, . . . , en. If γ encircles the edges e1, . . . , en, and all ei are
incident in the vertex ξ of Γ, we say that the arc γ is around the vertex ξ. Notice
that if e1, . . . , en, en+1, . . . , en+m are all the edges incident in the vertex ξ of Γ,
and γ is around vertex ξ encircling the edges e1, . . . , en, then γ also encircles the
edges en+1, . . . , en+m. The length of γ in Γ is the minimal number of intersection
points of γBz and Γ among all ∂–parallelism disks z for γ.

3. Primitive elements in spines

Let F be a free group. An element x ∈ F is called primitive if x is part of some
basis of F . A set of elements x1, x2, . . . , xk ∈ F are called associated primitive
elements if they are contained in some basis of F .

Let H be a genus g handlebody. A simple closed curve α ⊂ H represents a
primitive element in π1(H) if and only if there is an essential properly embedded
disk D ⊂ H such that α∩D consists of a single point. A set of simple closed curves
α1, . . . , αk ⊂ H represent a set of associated primitive elements in π1(H) if and
only if there is a system of meridional disks D1, D2, . . . , Dg ⊂ H such that, up to
renumbering, αi∩Di consists of a single point, and αi∩Dj = ∅ for i 6= j, i = 1 . . . , k,
and j = 1, . . . , g.
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Theorem 3.1. Let k ⊂ S3 be a knot, and let F ⊂ E(k) be a free Seifert surface
for k. Assume E(F ) is a handlebody of genus g.

If there exists a graph Γ = a1 ∨ · · · ∨ ag such that Γ is a spine for F on ∂E(F ),
and the ` curves a1, . . . , a` represent associated primitive elements of π1(E(F )),
then the handle number h(F ) ≤ g − `.

Proof. We follow the plan in Remark 2.2 (2): we will exhibit a system of properly
embedded arcs (the arcs βIj , below) which are the co-cores of g − ` 2–handles to
be drilled out of E(F ), and a system of g − ` 2–disks (D`+1, . . . , Dg, below) which
define the co-cores of g − ` 1–handles to be drilled out of E(F ∪

⋃
j β

I
j )

Let D1, D2, . . . , Dg ⊂ E(F ) be a system of meridional disks for E(F ) such
that |ai ∩ Di| = 1, and ai ∩ Dj = ∅ for i 6= j, i = 1, . . . , `, and j = 1, . . . , g.
This system of meridional disks exists, since a1, . . . , a` represent associated primi-
tive elements of π1(E(F )).

Let P ⊂ E(F ) be a regular neighbourhood of the base point x0 ∈ ∂E(F ) (x0

is also the base point of the graph Γ). We visualize P as a 2g–gonal prism. See
Figure 6. For i = 1, . . . , g, let Ti be a regular neighbourhood of ai in E(F ) such that
Ti ∩ Tj = P if i 6= j. Write T̂i = Ti − P ; then T̂i is a 3–ball. The intersection, T̂i ∩
P = d+

i ∪ d
−
i , is the disjoint union of two 2–disks d+

i and d−i (see Figure 6). Also
write ∂d+

i = βBi ∪ βIi where βBi is an arc in ∂E(F ), and βIi is a properly embedded
arc in E(F ). Finally, write Ai = ∂Ti − (d+

i ∪ d
−
i ∪ ∂E(F )) which is a 2–disk.

The arcs βI`+1, . . . , β
I
g are the co-cores of 2–handles in E(F ) to be drilled out,

according to the plan in Remark 2.2 (2):

Notice that the exterior of each βIi , E(βIi ) = E(F )−N (βIi ) ∼= E(F )−N (Ai),
and this homeomorphism is the identity map outside a small neighbourhood of Ai.

Consider V = E(F )− (T̂`+1 ∪ T̂`+2 ∪ · · · ∪ T̂g). Then V is a genus g handlebody
and E(F ) is a regular neighbourhood of V . We see that

E(F )− ∪g`+1N (βIi ) ∼= E(F )− ∪g`+1N (Ai) ∼= V ∪ (g − ` 1–handles )

where the g−` 1–handles are the g−` balls T̂i attached along the disks d+
i , d−i , i =

`+ 1, . . . , g.

By the choice of the disks {Di}, we see that V − ∪g`+1N (Di ∩ V ) is a regular
neighbourhood of a1 ∨ · · · ∨ a`. Then E(F )− (∪g`+1N (βIi ) + ∪g`+1N (Di ∩ V )) is a
regular neighbourhood of Γ. In other words, N (F ) ∪ {N (βIi )|i = ` + 1, . . . , g} ∪
{N (Di ∩ V )|i = ` + 1, . . . , g} determines a circular handle decomposition of E(k)
based on F , as in Remark 2.2 (2). Therefore, h(F ) ≤ g − `.

�

Remark 3.2. To describe the circular decomposition constructed in the proof of
Theorem 3.1, which may not be easy to visualize, we may use the program in
Remark 2.2 (1) as follows:

• Find a set of compression disks in E(F ) for a1, . . . , a`, that is, the disks
D`+1, . . . , Dg in the proof of Theorem 3.1.

• Put on ∂N (F ) a neighbourhood of the arc βIi circling the curve ai, for
i = `+ 1, . . . , g. See Figure 7.
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Figure 7. Put 1–handles.

• Enlarge the neighbourhoods of the arcs on ∂N (F ) like ‘tunnels’. See Fig-
ures 8, and 9.
• Glue what is left of the compression disks to N (F ). See Figure 10.

By the proof of Theorem 3.1, the exterior ofN (F )∪(1–handles)∪(compression disks)
is a neighbourhood of a parallel copy of F .

The case “` = g”:

Corollary 3.3. Let k ⊂ S3 be a knot, and let F be a free Seifert surface for k.
Assume E(F ) is a handlebody of genus g.

If there exists a graph Γ = a1∨a2∨· · ·∨ag such that Γ is a spine for F on ∂E(F ),
and the curves a1, . . . , ag form a basis of π1(E(F )), then k is a fibered knot with
fiber F .
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Figure 8. Enlarge 1–handles.

Figure 9. Full 1–handle enlargement.

Proof. In this case h(F ) = 0, therefore, E(F ) admits a product structure E(F ) =
F × I induced by Γ, and k is fibered with fiber F . �

The case “` = 0”:

Corollary 3.4. Let k ⊂ S3 be a knot, and let F ⊂ E(k) be a free Seifert surface
for k. Assume E(F ) is a handlebody of genus g.

Then h(k) ≤ g.

Proof. By Theorem 3.1, considering ` = 0, we have h(F ) ≤ g. Therefore, h(k) ≤
g. �

Remark 3.5. Corollary 3.4 asserts that for a connected knot k, h(k) ≤ 2gf (k).
See [6] for another proof of this fact (a fact called the ‘Free Genus Estimate’ in [6]).
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2
D

Figure 10. Put compression disks.

Corollary 3.6. If k is a connected free genus one knot, then h(k) = 0, 1, or 2.

�

Remark 3.7. At this point, it follows from Corollary 3.6, that if k is a connected free
genus one knot, and k is not fibered (that is, k 6= 31, 41), then cw(k) = 4, cw(k) = 6,
cw(k) = (4, 4), or cw(k) = (4, 4, 4) (here we use Remark 2.3 and Lemma 4.2 of [16]).

As it was mentioned in the Introduction, free genus one knots are almost fibered.
By Theorem 6.7 below, it follows that cw(k) ∈ {4, 6}.

Example 3.8. Rational knots. If k ⊂ S3 is a non-fibered rational knot, then h(k) =
1. Also cw(k) = 4g(k) if k is connected, and cw(k) = 4g(k) + 1 otherwise.

Let k ⊂ S3 be a rational knot. Then k is encoded with a continued fraction of the
form [2b1, 2b2, . . . , 2bg] where g is even or odd if k is connected or not, respectively.
Here b1, . . . , bg are non-zero integers . Now k has a minimal genus Seifert surface F
as in Figure 11 (see [1], Answer 1.19). This surface is free. Note that g(F ) = g/2
if k is connected, and g(F ) = (g − 1)/2 otherwise.

In a neighbourhood V of this surface we can find a spine Γ ⊂ F × {0} ⊂ ∂V
with Γ = a1 ∨ a2 ∨ · · · ∨ ag, as in Figure 12. For the obvious meridional disks,
x1, x2, . . . , xg, of the handlebody E(F ), corresponding to a basis {x1, x2, . . . , xg}
of π1(E(F )), the curves a1, a2, . . . , ag represent the elements xb11 , xb22 x1, xb33 x2 . . . ,
x
bg−1
g−1 xg−2, xbg

g xg−1 of π1(E(F )), respectively.

If each |bi| = 1, then a1, a2, . . . , ag represent a basis of π1(E(F )), and, by Corol-
lary 3.3, k is fibered with fiber F .

If some |bi| ≥ 2, then {xg, xb22 x1, x
b3
3 x2 . . . , x

bg−1
g−1 xg−2, x

bg
g xg−1} is a basis for

π1(E(F )); it follows that the curves a2, a3, . . . , ag ⊂ Γ represent associated primitive
elements of π1(E(F )), and, by Theorem 3.1, h(k) ≤ h(F ) = 1. By the second part
of the statement of Answer 1.19 of [1], k is not fibered. Therefore, 0 < h(k) =
h(F ) = 1, and cw(k) = 2g if k is connected, and cw(k) = 2g + 1 otherwise.
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Figure 11. A minimal Seifert surface for the knot k = [2b1, 2b2, . . . , 2bn].
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Figure 12. A spine for k = [2b1, 2b2, . . . , 2bg] in ∂N (F ).

Remark 3.9. In Theorem 3.21 of [3] it is claimed that the result in Example 3.8,
the one-handledness of rational knots, is known, but unpublished.

Example 3.10. Pretzel knots. The pretzel knot k = P (±3, q, r) with |q|, |r| odd
integers ≥ 3, has h(k) = 1 and, therefore, cw(k) = 4.

Let k be the pretzel knot P (p, q, r) with p, q, r odd integers. Then k is a connected
knot, and the ‘black surface’ F of a standard projection of k is a free genus one
Seifert surface for k. See Figure 13. If |p|, |q|, |r| ≥ 3, it is known that (1) k has a
unique incompressible Seifert surface (see [4]), namely, the free black surface F of
genus one; (2) k has tunnel number two (see [7]); (3) h(k) ≤ 2 (see Corollary 3.6);
(4) since t(k) 6= 1, k is not a rational knot; (5) also k is not fibered (that is,
k 6= 31, 44).

For any permutation s, t, u of p, q, r, the pair (S3, k) is homeomorphic to a pair
(S3, `) where ` is a pretzel knot P (s, t, u). Also, by a reflection, P (p, q, r) is equiv-
alent to P (−p,−q,−r). Then, by Remark 2.1, we may assume that it holds either,
Case 1 : “p, q, r > 0”, or Case 2 : “p < 0 and q, r > 0”.

There is a spine shown in Figure 13 for the surface F ×{0} ⊂ ∂N (F ). This spine
is a θ–graph. To obtain a wedge of circles as a spine Γ = a1∨a2 ⊂ F×{0} ⊂ ∂N (F ),
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xx
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Figure 13. Black surface for P (7, 9, 9).

we slide the middle edge of the θ–graph to the left. In Case 1, “p, q, r > 0”, we
obtain the upper part of Figure 14; and, in Case 2, “p < 0 and q, r > 0”, after using
an isotopy to avoid unnecessary intersections of the curve a2 with the disk x1, we
obtain the lower part of Figure 14. We see that, writing π1(E(F )) ∼= 〈x1, x2 : −〉:

Case 1, (p, q, r > 0), the curves a1 and a2 represent the elements x(r+1)/2
2 x

−(p−1)/2
1

and x
(p+1)/2
1 (x2x1)(q−1)/2, respectively, in π1(E(F )), or,

Case 2, (p < 0 and q, r > 0), the curves a1 and a2 represent the elements
x

(r+1)/2
2 x

(|p|+1)/2
1 and x

−(|p|−3)/2
1 (x2x1)(q−3)/2x2, respectively, in π1(E(F )).

Assume the number 3 ∈ {|p|, q, r}.
In Case 1, “p, q, r > 0”, using a homeomorphism of S3, we may assume p = 3. In

this case the curve a1 ' x(r+1)/2
2 x−1

1 represents a primitive element of π1(E(F )) for,
the set {x(r+1)/2

2 x−1
1 , x2} is a basis of π1(E(F )). Therefore, by Theorem 3.1, h(k) =

h(F ) = 1, and cw(k) = 4.

In Case 2, “p < 0 and q, r > 0”, if p = −3, then the curve a2 ' (x2x1)(q−3)/2x2

represents a primitive element of π1(E(F )) for, the set {(x2x1)(q−3)/2x2, x2x1} is
a basis of π1(E(F )). If q = 3 or r = 3, we may assume that q = 3, and then
the curve a2 ' x

(|p|−3)/2
1 x2 represents a primitive element of π1(E(F )) for, the

set {x−(|p|−3)/2
1 x2, x1} is a basis of π1(E(F )).

In both cases, p = −3, or q or r = 3, we conclude by Theorem 3.1, h(k) =
h(F ) = 1, and cw(k) = 4.

Remark 3.11. If |q|, |r| are odd integers ≥ 3, then k = P (±3, q, r) has tunnel number
two. Then the family of pretzel knots {P (±3, q, r) : |q|, |r| odd integers ≥ 3} is a
family of examples of non-fibered knots k for which the strict inequality h(k) < t(k)
holds (compare with [10], where it is proved that h(k) ≤ t(k)).

4. Pretzel knots: the case |p|, |q|, |r| ≥ 5

In this section we show:
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Figure 14. Spines for P (p, q, r).

Theorem 4.1. The free genus one Seifert surface for a pretzel knot P (p, q, r) with
|p|, |q|, |r| ≥ 5 has handle number two.

As noted in Example 3.10, when dealing with the pretzel knot k = P (p, q, r) we
may assume: Case 1: “p, q, r > 0”, or Case 2: “p < 0 and q, r > 0”.

4.1. Handle decompositions of E(P (p, q, r)).

Lemma 4.2. Let V be a handlebody and let α ⊂ V be a properly embedded arc. If
the exterior E(α) ⊂ V is a handlebody, then α is parallel into ∂V .

Proof. By hypothesis, π1(E(α)) is a finitely generated free group. If N (α) = D2×I
is a regular neighbourhood of α in V , let µ = ∂D2 × {1/2} be a meridian of N (α).
If N〈µ〉 denotes the normal closure of the element represented by µ in π1(E(α)),
then π1(E(α))/N〈µ〉 is isomorphic to the fundamental group of the space obtained
from E(α) by adding a 2–handle along µ. Then π1(E(α))/N〈µ〉 ∼= π1(V ) is a
free group. It follows that µ represents a primitive element in π1(E(α)) (see [17],
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Theorem 4). Thus, there is an essential disk δ ⊂ E(α) such that the number of
points #(δ ∩ µ) = 1. After an isotopy, we may assume that ∂δ ∩ ∂N(α) = γ is an
arc, and ∂δ = β ∪ γ where β is an arc contained in ∂V .

There is a product 2–disk Z = (radius of D2) × I between γ and α, with Z ⊂
N (α) for some product structure D2 × I of N (α). Then δ can be extended to a
disk δ′ = Z∪δ whose boundary is a union of arcs α∪β′ with β′ ⊂ ∂V (and β ⊂ β′).
Therefore, α is parallel into ∂V . �

Corollary 4.3. Let F be a free Seifert surface for a knot k. Suppose F has han-
dle number one and let α be the core of the 1–handle of a one-handled circular
decomposition of E(k) based on F . Then α is parallel into ∂E(F ).

Proof. As in Remark 2.2 (2), the one-handled decomposition of the pair (E(F ), F )
is constructed by, first, drilling a 2–handle out of E(F ) disjoint with, say, F ×{1}.
This 2–handle has as co-core the arc α of the statement (cf. Remark 2.6.1). After
drilling out α, we, secondly, drill one 1–handle B out of the exterior E(α) ⊂ E(F )
with B disjoint with F ×{1}. The result of this drilling is a regular neighbourhood
of the surface F ×{0} in E(k) which is a handlebody. Therefore, the exterior E(α)
in E(F ) is the union of the neighbourhood of F × {0} and the 1–handle B; that
is, E(α) is a handlebody. By Lemma 4.2 we conclude that α is parallel into ∂E(F ).

�

Proof of Theorem 4.1. Let F be the free genus one Seifert surface for k = P (p, q, r)
with |p|, |q|, |r| odd integers ≥ 5.

For the sake of contradiction, we assume that F has handle number one. By
Corollary 4.3, the core γ of the 1–handle of the circular decomposition of E(k) based
on F is parallel into ∂E(F ). By assumption, there is also a 2–handle B ∼= I ×D2

that completes the decomposition, such that the exterior E(γ ∪ B) ⊂ E(γ) is a
regular neighbourhood of F in E(k), and ∂B is disjoint with F . In particular the
core, {1/2} ×D2, of B is an essential disk in E(γ) disjoint with F . We will show
that any essential disk in E(γ) intersects F , obtaining the desired contradiction.

Case 1: “p, q, r > 0”. Let Γ = a1 ∨ a2 be the spine for F given in Example 3.10.
By Remark 2.5, we only need to analyze the handle decompositions of (E(F ),Γ).
There is an obvious system of meridional disks x1, x2 ⊂ E(F ) as depicted in the up-
per part of Figure 14. The Whitehead diagram for (E(F ),Γ) with respect to x1, x2

looks like Figure 15.
In the corresponding Whitehead graph G we see:

• Four fat vertices corresponding to the meridional disks x1 and x2.
• There are (q − 1)/2 horizontal edges connecting x̄1 and x2, and (q − 1)/2

horizontal edges connecting x1 and x̄2; all these horizontal arcs belong to
the curve a2.

• There are (r− 1)/2 vertical edges connecting x2 and x̄2; one diagonal edge
connecting x1 and x2, and one diagonal edge connecting x̄1 and x̄2; all these
vertical and diagonal edges belong to the curve a1.

• Finally, connecting x1 with x̄1, we find, going from right to left in Figure 15,
first an arc belonging to a2, and then we find (p−3)/2 pairs of arcs belonging
consecutively to a1 and a2; and a last arc belonging to a2 which crosses with
the diagonal arc from x1 to x2 on the base point of Γ.
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Claim 0: Let z be a ∂–parallelism disk for the arc γ in E(F ). Then the disk z
contains at least one point of a1 and one point of a2.

Proof. Let Gi be the Whitehead graph of the pair (E(F ), ai) with respect to x1, x2

(i = 1, 2). See Figure 16. After sliding the handle defined by the disk x2 along
the handle defined by x̄1 on the right side of Figure 16, the image of the graph G2

looks like Figure 17. Since these graphs are connected and contain no cut vertex,
it follows from Corollary 2.9 that any essential disk in E(F ) intersects ai (i = 1, 2).
Now, the exterior E(γ) can be regarded as a copy of E(F ) plus one 1–handle
defined by the disk z. Assume z ∩ a2 6= ∅. If z ∩ a1 = ∅, then a1 is contained
in the copy of E(F ) ⊂ E(γ). By hypothesis there is an essential disk ∆ ⊂ E(γ)
such that ∆ ∩ (a1 ∪ a2) = ∅. Now, ∆ ∩ z 6= ∅, otherwise ∆ is a subset of the
copy of E(F ) ⊂ E(γ) missing the extra 1–handle, and ∆ ∩ a1 = ∅, contradicting
that any essential disk in E(F ) intersects a1. Through isotopies, we may assume
that ∆ ∩ z is a set of disjoint arcs. Then the intersection of ∆ with the copy
of E(F ) ⊂ E(γ), that is, the set ∆ ∩ (E(γ)−N (z)), is a set of disjoint properly
embedded disks ∆1, . . . ,∆n ⊂ E(F ). Since ∆ is not parallel to z in E(γ), at least
one ∆i is essential in E(F ), otherwise ∆ would be parallel into ∂E(γ). We obtain
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again an essential disk in E(F ) disjoint with a1, which is a contradiction as above,
and, therefore, z ∩ a1 6= ∅. �

r−1

2

−3p

2

x

x x

x
1

1
2

2

−1q

2

−1q

2

−3p

2

x

x x

x
1

1
2

2

Figure 16. The graphs of curves a1 and a2

The arc γ, being ∂–parallel in E(F ) by Corollary 4.3, can be isotoped into this
Whitehead diagram as a properly embedded arc with ends disjoint with G (that is,
after an isotopy of E(F ), we may assume that γ is disjoint with the system of disks
x1 and x2). Recall that we are assuming that γ is the core of a 1–handle of a one-
handled circular decomposition of E(k) based on F . Therefore, after drilling out γ,
there is an essential disk in E(γ) disjoint with Γ; that is, after drilling out γ, and
obtaining a new Whitehead diagram with six fat vertices with Whitehead graph G′,
there is a sequence of handle slides of E(γ) that disconnect the graph G′, giving an
essential disk in E(F ) disjoint with Γ (see Section 2.6).

Let Gi be the Whitehead graph of the pair (E(F ), ai) with respect to x1, x2. See
Figure 16. After drilling out the arc γ from the diagram of Gi, we obtain a new
Whitehead diagram for (E(γ), ai) with six fat vertices, corresponding to x1, x2,
and z, and with Whitehead graph G′i. Performing the handle slides of E(γ) as
above, the image of the graph G′i will be also disconnected, giving an essential disk
in E(γ) disjoint with ai (i = 1, 2).

Notice that if we drill out an arc of length one in Gi and perform handle slides,
the image of Gi is disconnected (it contains four isolated fat vertices), i = 1, 2. We
deal with this kind of arcs after Claims 1 and 2.

Claim 1: Let α be a properly embedded arc in (E(F ), a2), disjoint with a2,
such that α is parallel into ∂E(F ), and α has length at least two in G2. Then any
essential disk in E(α) intersects a2.

Proof. The arc α minimally encircles a number of edges of the graph G2. For
example, the arc that encircles the two diagonal edges in Figure 17 actually has
length 0.

Now, after sliding the handle defined by the disk x2 along the handle defined
by x̄1 on the right side of Figure 16, the image of the graph G2 looks like Figure 17.
The fat vertices of this graph are also obtained from the images of the disks x1

and x2 after the slide. We still call this new graph and new disks G2, and x1, x2,
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respectively. This graph has (q − 3)/2 vertical edges connecting x2 with x̄2, one
diagonal edge connecting x2 with x̄1, one diagonal edge connecting x1 with x̄2, and
there are (p− 1)/2 vertical arcs connecting x1 with x̄1.

Let z be a minimal ∂–parallelism disk for α in E(F ), and let G be the Whitehead
graph of (E(α), a2) with respect to x1, x2, and z, which is obtained from G2, by
cutting along z and adding two fat vertices z and z̄.
Case “Length of α = 2”: Since p ≥ 5, there are at least two vertical edges con-
necting x1 and x̄1. Then there are two types of arcs of length two for the edges
of G2 around x1 as in Figure 17, for, any arc encircling two consecutive edges of G2

connecting x1 and x̄1 can be slid in E(F ) into an arc of type 1 or type 2. See
Figure 18 where the arcs that can be slid in E(F ) into an arc of type 2 are shown.

After drilling out the arc α, if α is of type 1, or of type 2, the new Whitehead
graph contains a cut vertex (see Figure 19).

After sliding handles, as in Section 2.6.1, we end up with a graph G′2 with its
simple associated graph a cycle of six vertices and six edges; that is, this sim-
ple graph contains no cut vertex. Therefore, G′2 contains no cut vertex, and by
Corollary 2.8, a2 intersects every essential disk of E(α).

If q ≥ 7, there are at least two vertical edges connecting x2 and x̄2. Then, by
symmetry, the analysis of arcs of length two around x2 and x̄2 is the same as for
arcs of length two around x1 and x̄1.

If q = 5, there is a single vertical edge connecting x2 and x̄2, and, then, there
are no arcs of length two around x2 or x̄2.

For arcs not around a vertex of G2, there are two more types of arcs of length
two as in Figure 20, but, after drilling out the arc α of type 3 or 4, the new
Whitehead graph contains no cut vertex, and then, by Corollary 2.8, a2 intersects
every essential disk of E(α).
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Case “Length of α ≥ 3”: If α is an arc around xi, we may assume that the length
of α in G2 is between 3 and degree(xi)/2 (see last paragraph of Section 2.6.1), and α
contains a sub-arc of type 1 or 2. After drilling out the arc α and sliding, if there
appear cut vertices, we end up with a graph with its simple associated graph a
cycle with six vertices and six edges. Therefore, a2 again intersects every essential
disk of E(α).

If α is of length at least 3, and α contains a sub-arc of type 3 or 4, then, after
drilling out the arc α, the new Whitehead graph contains no cut vertex, and, by
Corollary 2.8, we conclude that a2 intersects every essential disk of E(α).
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By the final remarks of Section 2.6.1, the arcs of type 1-4 exhaust all arcs to be
considered as arcs of a one-handled decomposition for G2.

�

Claim 2: Let α be a properly embedded arc in (E(F ), a1), disjoint with a1,
such that α is parallel into ∂E(F ), and α has length at least two in G1. Then any
essential disk in E(α) intersects a1.

Proof. The Whitehead graph G1 of (E(F ), a1) has a shape as in Figure 17, but with
(r − 1)/2 vertical edges connecting x2 with x̄2, one diagonal edge connecting x2

with x̄1, one diagonal edge connecting x1 with x̄2, and there are (p− 3)/2 vertical
arcs connecting x1 with x̄1.

A similar (symmetric) analysis as in Claim 1, gives that a1 intersects every
essential disk of E(α).

�

We are assuming that, after drilling out the arc γ, there is a set of handle slides
of E(γ) that disconnect the graph G′, giving an essential disk in E(F ) disjoint
with Γ.

By Claims 1 and 2, γ is of length one in G1, and of length one in G2. If γ is
around one fat vertex ξ of G, it might happen that γ encircles exactly one edge
of G1, and all but one edge of G2, or vice versa. In this case, γ is around either x2

or x̄2. There are four arcs around x2, and four arcs around x̄2 of this kind. The
four arcs with this property around x̄2 can be slid in E(F ) and become equivalent
to the four arcs around x2 in Figure 21; see Section 2.6.1. After drilling out γ, there
is a cut vertex in the new Whitehead graph, and a single handle slide produces a
graph G′ with no cut vertices. By Corollary 2.8, there are no essential disks disjoint
with G in E(γ). Another possibility is that γ encircles all but one edge of G1 and
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all but one edge of G2, but in this case, γ also encircles exactly one edge of G1, and
exactly one edge of G2.

There are four types of arcs of length two encircling exactly one edge of G1 and
exactly one edge of G2 (see Figure 22). Again, any arc encircling two edges of G,
one of G1 and one of G2 can be slid in E(F ) into an arc of type 1, type 2, type 3,
or type 4; see Section 2.6.1.
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After drilling out the arc γ, if γ is of type 1, type 2, type 3, or type 4, the new
Whitehead graph contains a cut vertex. After sliding, we end up with a graph G′

with its simple associated graph as one of the drawings in Figure 23. Since these
graphs contain no cut vertex, by Corollary 2.8, we conclude that any essential disk

Figure 23

in E(γ) intersects G, and, therefore, intersects Γ ⊂ F . This contradiction shows
that h(F ) 6= 1. Since k = P (p, q, r) is not fibered, and h(F ) ≤ 2, by Corollary 3.6,
it follows that h(F ) = 2, when p, q, r ≥ 5.

This finishes Case 1.
Case 2: “p < 0, and q, r > 0”. As in Example 3.10, we construct a spine

Γ = a1 ∨ a2 for F starting with the spine shown in Figure 13, but now we slide the
middle edge of the θ–graph rightwards. The spine Γ looks like Figure 24, and the
Whitehead diagram for (E(F ),Γ) with respect to the system of disks x1, x2 is as in
Figure 25. By Remark 2.5, we only need to analyze the handle decompositions of
(E(F ),Γ).

xx
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The Whitehead graphs G1 and G2 of the pairs (E(F ), a1) and (E(F ), a2), re-
spectively, are shown in Figure 26. Although these diagrams are similar to the
diagrams in Figure 16 of Case 1, the configuration of the diagram for a1 here is not
the same as the configuration of the positive case (Case 1); that is, the correspond-
ing Whitehead diagrams are not isomorphic.

However, the analysis of the different properly embedded arcs in the Whitehead
diagrams of (E(F ), a1), (E(F ), a2), and (E(F ),Γ), giving rise to a possible one-
handled decomposition, is completely similar as in Case 1.

The Whitehead diagram for (E(F ), a2) is isomorphic to the corresponding White-
head diagram of Case 1. Then

Claim 1: Let α be a properly embedded arc in (E(F ), a2), disjoint with a2,
such that α is parallel into ∂E(F ), and α has length at least two in G2. Then any
essential disk in E(α) intersects a2.

�

Claim 2: Let α be a properly embedded arc in (E(F ), a1), disjoint with a1,
such that α is parallel into ∂E(F ), and α has length at least two in G1. Then any
essential disk in E(α) intersects a1.

Proof. We first analyze arcs of length 2 in G1. The arcs around vertices x1 and x̄1

are shown in Figure 27. There are only two types after sliding the arcs in E(F ).
After drilling out the arc α, if α is of type 1, or of type 2, the new Whitehead graph
contains a cut vertex, but after sliding handles, as in Section 2.6.1, we end up with
a graph G′1 with its simple associated graph a cycle of six vertices and six edges;
that is, this simple graph contains no cut vertex. Therefore, G′1 contains no cut
vertex, and by Corollary 2.8, a2 intersects every essential disk of E(α).

For arcs of length 2 around the vertices x2 and x̄2, the analysis is identical to
Case 1.
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For arcs not around a vertex of G1, there are two more types of arcs of length
two as in Figure 28, but, after drilling out the arc α of type 3 or 4, the new
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Whitehead graph contains no cut vertex, and then, by Corollary 2.8, a2 intersects
every essential disk of E(α).

For arcs of length at least three, we follow the same argument as in Case 1, and
conclude that a2 intersects every essential disk of E(α).

�

Recall that we are assuming that γ is the core of a 1–handle of a one-handled
circular decomposition of E(k) based on F . In view of Claims 1 and 2, as in Case 1,
we see that the arc γ encircles exactly one edge of G1, and exactly one edge of G2.

There are four types of arcs of length two encircling exactly one edge of G1 and
exactly one edge of G2 (see Figure 29). For, any arc encircling two edges of G, one
of G1 and one of G2 can be slid in E(F ) into an arc of type 1, type 2, type 3, or
type 4 (Section 2.6.1).

After drilling out the arc γ, if γ is of type 1, type 2, type 3, or type 4, the new
Whitehead graph contains a cut vertex. After sliding, we end up with a graph G′

with its simple associated graph as one of the drawings in Figure 30. Since these
graphs contain no cut vertex, by Corollary 2.8, we conclude that any essential
disk in E(γ) intersects G, and, therefore, intersects Γ ⊂ F . Thus, h(F ) 6= 1.
Since k = P (p, q, r) is not fibered, and h(F ) ≤ 2, by Corollary 3.6, it follows that
h(F ) = 2, when p ≤ −5 and q, r ≥ 5.

This finishes Case 2, and also the proof of Theorem 4.1.
�

Corollary 4.4. Let k be the pretzel knot P (p, q, r) with |p|, |q|, |r| ≥ 5. Then
cw(k) = 6.

Proof. Since k has a unique incompressible Seifert surface, by Remark 2.3 it follows
that cw(k) ∈ Z. By Theorem 4.1, cw(k) = 6. �
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Remark 4.5. Theorem 4.1 gives a family of knots of genus one and handle number
two. This answers in the affirmative a question in [6]: Does there exist a knot k
with h(k) > g(k)?

5. Genus one essential surfaces and powers of primitive elements

In this section we show that if k is a free genus one knot with at least two non-
isotopic Seifert surfaces, then the free Seifert surface of k admits a special type of
spine. This result is essential to prove the main theorem of Section 6 (Theorem 6.7).

Lemma 5.1. Let H be a handlebody of genus g ≥ 2, and let α ⊂ ∂H be a simple
closed curve. Assume that there is a primitive element p ∈ π1(H) such that α
represents an element conjugate with pn for some n ∈ Z, n 6= 0. Then there is an
essential 2–disk D ⊂ H such that D ∩ α = ∅.

Proof. Consider a basis {p, q2, . . . , qg} for π1(H). Then π1(H) = 〈p〉 ∗ 〈q2, . . . , qg〉
is a non-trivial splitting, and α is conjugate with pn ∈ 〈p〉. Then {α} is separable
in π1(H), and the disk D is obtained by Theorem 3.2 of [15]. �

Let Γ ∼= a1 ∨ a2 be a graph in the boundary of a genus two handlebody H. We
say that a2 spoils disks for a1 if for any essential disk D ⊂ H such that D∩a1 = ∅,
the number of points #(D ∩ a2) ≥ 2.
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Theorem 5.2. Let k ⊂ S3 be a non-trivial connected knot, and let F ⊂ E(k) be a
free genus one Seifert surface for k.

There is another genus one Seifert surface for k which is not equivalent to F if
and only if there exists a spine Γ = a1 ∨a2 for F in ∂N (F ) such that a1 represents
an element conjugate to gn with n ≥ 2 for some primitive element g ∈ π1(E(F )),
and a2 spoils disks for a1.

Proof. Let Γ = a1∨a2 be a spine for F such that a1 represents an element conjugate
to gn with n ≥ 2 for some primitive element g ∈ π1(E(F )), and a2 spoils disks for
a1

Let D ⊂ E(F ) be an essential properly embedded disk such that a1 ∩ D = ∅,
which is given by Lemma 5.1. We may assume that H1 = E(F )−N (D) is a
solid torus. Let A1 be a regular neighbourhood of a1 in ∂E(F ); then A1 ⊂ ∂H1.
Write B1 = ∂H1 −A1. Since |n| ≥ 2, the annuli A1 and B1 are non-parallel in H1.
We push Int(B1) into H1 to obtain B′1, a properly embedded annulus in H1.

Let N (a2) ⊂ ∂E(F ) be a regular neighbourhood of a2 such that A1 ∩ N (a2)
is a rectangle; then B2 = N (a2)−A1 is a ‘band’ (that is, a 2–disk) such that
B2 ∩ A1 = B2 ∩ B′1 is a pair of arcs in ∂B′1. Then G = B2 ∪ B′1 is a genus one
Seifert surface for k (we push Int(G) slightly into E(F ) to get a properly embedded
surface in E(F )).

Now, Ĝ = G ∩ H1 is the union of the annulus B′1 with the disk components
of B̂2 = B2 ∩H1. Notice that ∂B̂2 ⊂ B1 ⊂ ∂H1.

By hypothesis #(a2∩D) ≥ 2; thus, Ĝ is disconnected, and the components of Ĝ
are B′1 ∪ (two 2–disks of B̂2), and at least one sub-disk z ⊂ B̂2 with ∂z ⊂ Int(B1).

Since |n| ≥ 2, we cannot push B′1 onto A1 in H1. Then a ∂–parallelism for Ĝ
in H1 contains a ∂–parallelism W for B′1 onto B1, but then W contains the 2–disk
z ⊂ Ĝ. Therefore, Ĝ is not parallel into ∂H1. We conclude that G is not boundary
parallel in E(F ) for, a ∂–parallelism for G induces a ∂–parallelism for Ĝ. It follows
that G and F are not equivalent. This finishes sufficiency.

Now, if there is another genus one Seifert surface for k which is not equivalent
to F , we can find still another non-equivalent genus one Seifert surface G ⊂ E(k)
for k such that G and F have disjoint interiors; see [13]. We write k = G∩ ∂E(F ).

The surface G splits E(F ) into two handlebodies, H0 ∪H1 = E(F )−N (G), of
genus two for H0 and H1 are irreducible and, since G is π1–injective into H0 and H1,
it follows that H0 and H1 are π1–injective into E(F ); therefore, H0 and H1 have
free fundamental groups. We assume ∂Hi = G ∪ (F × {i}) plus a neighbourhood
of k, i = 0, 1. By considering a system of disks for the handlebody E(F ), we see
that there is a disk D ⊂ E(F ) that ∂–compresses G in E(F ), and D is contained
in, say H0, and is properly embedded in H0.

Then k is a ((1, 0), (n,m))–curve in ∂H0 (Lemma 4.3 of [16]) with |k ∩D| = 2.
See Figure 31.

Cutting H0 along D we obtain a solid torus V ⊂ H0 such that Ĝ = G ∩ V
is an (n,m)–torus annulus in ∂V ; and the complementary annulus F̂ = ∂V − Ĝ
contains, and is isotopic, to (F × {0}) ∩ V in ∂V with an isotopy fixed outside a
regular neighbourhood of D.
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Figure 31. Surfaces G and F × {0} in H0.
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Figure 32. Γ = a1 ∨ a2 and b1.

Let a1 ⊂ F × {0} be the core of the annulus F̂ , and let b1 ⊂ Ĝ be the core of
the annulus Ĝ.

Let C ′ ⊂ ∂H0 be a 2–disk that contains the pair of disks ∂H0 ∩ N (D), and
let C ⊂ H0 be a properly embedded disk with ∂C = ∂C ′. Now let Z ⊂ H0 be a
meridional disk such that Z ∩C = ∅. Then F̃ = (F ×{0})∩ (H0 −N (Z)) contains
a (1,0)–annulus A in the solid torus H0 −N (Z). Let a2 ⊂ Int(F ×{0}) be the core
of A, where we can arrange that a1 ∩ a2 is just one point. Then Γ = a1 ∨ a2 is a
spine for F . See Figure 32.

The curve a2 spoils disks for a1 in E(F ) for, otherwise, there is an essential
disk D ⊂ E(F ) such that D ∩ a1 = ∅, and the number of points #(D ∩ a2) < 2.
If D ∩ a2 = ∅, since Γ is a spine for F , the surface F is contained in the solid
torus E(D) ⊂ E(F ); it follows that F is compressible in E(D), and, thus, F is
compressible in E(F ). But, since k is non-trivial, and g(F ) = 1, F is incompressible
in E(k). Then D∩ a2 is just one point, and D∩ ∂F is a set of two points. We may
assume that D intersects k = ∂G in exactly two points. Since G is incompressible,
we may arrange that D ∩ G is just one arc. Now, this arc is essential in G for,
otherwise, we can slide G along D, and obtain G′ homotopic to G in E(F ) such
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that G′ is contained in the solid torus E(D); then G′ is not π1–injective, and,
since G and G′ are homotopic embeddings, thus, G is not π1–injective; but that
makes G compressible. Then Ĝ = G ∩ E(D) is an annulus, therefore, Ĝ is parallel
into ∂E(D). Using the disk D we can extend this parallelism to a parallelism of G
into ∂E(F ), contradicting that G is essential in (E(F ), k).

Now, a1 ⊂ F × {0} represents, up to conjugacy, the same element as b1 ⊂ G
in π1(H0) for, they are disjoint curves on a torus, and therefore, parallel.

Observe that, since G is not parallel to F ×{0}, we have |n| ≥ 2. In particular Ĝ
and F̂ are not parallel in V .

We now explore H1.
Recall D is a ∂–compression disk for G in E(F ); in particular D∩∂E(F ) is an arc.

It follows that, to recover E(F ) from E(F )−N (D), we attach to E(F )−N (D)
the 3–ball N (D) along a disk. Then E(F )−N (D) is a genus 2 handlebody. In
fact E(F ) is a regular neighbourhood of E(F )−N (D). In particular, the inclusion
induces an isomorphism π1(E(F )−N (D))→ π1(E(F )).

Since E(F )−N (D) = H1∪ bGV , then H1∪ bGV is a genus two handlebody. There-
fore, the core b1 of Ĝ represents a primitive element β1 ∈ π1(H1) for, if π1(V ) =
〈v;−〉, then b1 represents vn, which is not primitive in V . The element β1 is
part of a basis, say, π1(H1) = 〈w, β1 : −〉. By Seifert-van Kampen, π1(E(F )) ∼=
π1(H1∪ bGV ) = 〈w, β1, v : β1 = vn〉 ∼= 〈w, v : −〉. That is, v is primitive in π1(E(F )),
and b1 represents vn.

�

6. Free genus one knots are almost fibered

In this section we show that all free genus one knots are almost fibered. We start
with an outline of the plan of the proof:

Start with a non-fibered free genus one knot k with a genus one free Seifert
surface F ⊂ E(k). If k has a unique Seifert surface, then k is almost fibered
(Remark 2.3). If k has another non-isotopic Seifert surface, as in Remark 3.7, k
has a genus one Seifert surface not isotopic to F . By Theorem 5.2, there is a
spine Γ = a1 ∨ a2 for F in ∂N (F ) such that a1 represents an element conjugate
to gp with p ≥ 2 for some primitive element g ∈ π1(E(F )), and a2 spoils disks
for a1. By Lemma 5.1, we can find an essential disk ∆ ⊂ E(F ) with ∆ ∩ a1 = ∅,
and the exterior E(∆) = E(F )−N (∆) is the disjoint union of two solid tori, V0, V1

with, say, a1 ⊂ ∂V0. We regard ∆ ⊂ ∂V0. Then Γ ∩ V0 consists of the curve a1,
which is a (p, q)–curve in V0, and an arc with endpoints on ∂∆ intersecting a1 in
exactly one point, and a set of parallel arcs with endpoints on ∂∆ which are disjoint
with a1. See Figure 36.

In Section 6.1 we show how to find a properly embedded arc in V0 disjoint
with Γ which, in Section 6.2, is shown to be the core of the 1–handle of a one-
handled circular decomposition for E(k) based on F . In this analysis, the disk ∆ is
regarded as ‘unreachable’, and should be thought as very near the point at infinity.
That is, all homeomorphisms in this subsection will fix point-wise the disk ∆.
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6.1. Handles for torus manifolds. Let p and q be a pair of coprime integers.
Consider the points {s`}p`=1 ⊂ S1 with s` = e2πi`/p; also let Ṽ be the cylinder D2×
I, and write sI` = s` × I ⊂ Ṽ . The rotation ρq of angle 2πq/p on D2 gives a
quotient P : (Ṽ ,∪p`=1s

I
` ) → (V, α), where V is the solid torus obtained from Ṽ by

identifying (z, 0) with (ρq(z), 1) for each z ∈ D2, and α is the simple closed curve
on ∂V obtained as the image of the union ∪p`=1s

I
` in this quotient. The rotation ρq

acts on {s`}p`=1 as the cyclic permutation of order p such that ρq(si) = si+q where
subindices are taken mod p. We consider also a fixed point ∞ ∈ α, the ‘point
at infinity’. The homeomorphism type of the pair (V, α) is called the (p, q)–torus
sutured manifold, or simply the (p, q)–manifold. Throughout this section we assume
0 < q < p. Notice that the (p, q)–torus sutured manifold (V, α) is not a sutured
manifold, but α is a spine of a small regular neighbourhood N (α) ⊂ ∂V , and the
pair (V,N (α)) is a true sutured manifold with suture α.

In the following, we perform several operations on the (p, q)–manifold (drilling
of arcs, homeomorphisms, etc.), and it will be done in such a way that the point at
infinity of the manifold will remain fixed.

Let x ⊂ V be the meridional disk P (D2 × {0}). From the pair (Ṽ ,∪p`=1s
I
` ) we

give a Whitehead diagram for the (p, q)–manifold (V, α) associated to x as follows:

We regard Ṽ = D2× I as the exterior E(x) ⊂ V , and write x and x̄ for D2×{0}
and D2×{1}, respectively. The arcs sI1, . . . , s

I
p are the edges of G, the corresponding

Whitehead graph with fat vertices x and x̄. To obtain a Whitehead diagram, we
have to number the endpoints of sI1, . . . , s

I
p. In a plane projection of the graph G, we

assume that the unbounded face of G contains the edges sIq and sIq+1. See Figure 33.
The point at infinity is either the middle point of sIq , or the middle point of sIq+1.
If∞ ∈ sIq , then we rename vj = (sj , 0) and v̄j = (ρq(sj), 1) = (sj+q, 1); if∞ ∈ sIq+1,
we rename vj = (sj+q, 0) and v̄j = (ρq(sj+q), 1) = (sj+2q, 1) where subindices
are taken mod p. In any case, we number the point vi with the number i, and
the point v̄j with the number j (i, j = 1, . . . , p). Also, we write αi for the edge
of G such that vi ∈ αi. This diagram and the corresponding Whitehead graph
are called the (p, q)–diagram and the (p, q)–graph, respectively. Notice that the
edge α1 connecting x with x̄ starting at the point numbered 1 ∈ x ends at the
point numbered p− q + 1 ∈ x̄.

Remark 6.1. Consider a Whitehead diagram of a pair (V, α) associated to x where V
is a solid torus, α is a simple closed curve on ∂V , and x is a meridional disk of V .
If in the fat vertices of the Whitehead diagram of (V, α), the points corresponding
to ends of edges are numbered with elements of the set {1, . . . , p} consecutively in
the positive (negative) direction on x (on x̄), in a compatible way with the gluing
homeomorphism to recover the V , then if the edge connecting x with x̄ starting at
the point numbered 1 ∈ x ends at the point numbered t ∈ x̄, then t = p − q + 1;
that is, the Whitehead diagram corresponds to the (p, q)–torus sutured manifold
with q = p− t+ 1.

Let (V, α) be the (p, q)–torus sutured manifold, and let G be the Whitehead
graph of (V, α) with respect to a meridional disk x ⊂ V . Let γ be a properly
embedded arc in V , such that γ is around the vertex x in the Whitehead diagram
of (V, α) with respect to x, and γ encircles the edges α1, . . . , αq. Also, assume
that γ lies ‘above’ the point ∞ ∈ α, that is, γ is between ∞ and x. See Figure 33.
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Figure 33. Whitehead diagrams for the (9,4)–manifold and the
(9,5)–manifold
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Figure 34

The arc γ is called the canonical 2–handle of length q for the (p, q)–manifold. Note
that the arc γ is the co-core of a 2–handle in V .

If we drill out the canonical 2–handle of length q, we obtain a Whitehead diagram
with respect to the system of disks x, z ⊂ E(γ) ⊂ V where z is the obvious ∂–
parallelism disk for γ. See Figure 34. We refer to this Whitehead diagram as the
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Whitehead diagram obtained by drilling out the canonical 2–handle of length q of
the (p, q)–manifold. Notice that the arc g in Figure 34 is a ‘longitude’ for the handle
defined by z. That is, if we glue back the disks z and z̄ and kill the longitude g with
a 2–handle, we recover the Whitehead diagram of the (p, q)–manifold. In practice,
we just join the ends of the edges in z with the ends of the edges in z̄ with parallel
arcs on the diagram, and delete the disks z and z̄ from the picture, and we get the
Whitehead diagram of the (p, q)–manifold back.

Let G be the graph of the Whitehead diagram obtained by drilling out the
canonical 2–handle of length q of the (p, q)–manifold. Then G is a graph with four
fat vertices x, x̄, z, and z̄; there are q edges connecting z and x; there are q edges
connecting z̄ and x̄; and there are p− q edges connecting x with x̄. Compare with
Figure 34. Note that x is a cut vertex of G (and z and z̄ are not cut vertices); then
we can slide the handle corresponding to z along the handle defined by x

After sliding, if the new disk x is still a cut vertex, we can again slide the new
disk z along the new disk x, and so on. Let G′ be the image of the graph G after κ
handle slides of z along x. The graph G′ is called the κ–slid graph obtained from
the (p, q)–graph G.

Lemma 6.2. Let p, q be a pair of coprime integers, 0 < q < p, and assume that

p = κ1q + r1, with 0 ≤ r1 < q, and κ1 ≥ 1

Let G be the graph of the Whitehead diagram obtained by drilling out the canonical
2–handle of length q of the (p, q)–manifold, and let G′ be the κ1–slid graph obtained
from the (p, q)–graph G. Then G′ is the graph of the Whitehead diagram obtained
by drilling out the canonical 2–handle of length r1 of the (q, r1)–manifold. The point
at infinity is a fixed point of these handle slides.

Proof. In the Whitehead graph G, the ends of the edges connecting the disk z
with the disk x, are numbered 1, 2, . . . , q in the disk x; these ends are the points
v1, v2, . . . , vq in ∂x. Then, after sliding z along x, the new disk z carries the
edges with ends that were numbered 1, 2, . . . , q in x̄. Thus, now the ends of the
edges connecting z and x, after the slide, have ends which are the image of the
rotation ρq of angle 2πq/p of the points v1, v2, . . . , vq; that is, the ends are the
points vq+1, vq+2, . . . , v2q which are numbered q + 1, q + 2, . . . , 2q in x.

We see that after sliding κ1−1 times z along x, the ends of the edges connecting z
and x are numbered (κ1− 1)q+ 1, (κ1− 1)q+ 2, . . . , κ1q in x. Then after sliding κ1

times z along x, the points still connected by edges in x are numbered κ1q +
1, κ1q + 2, . . . , p. Now, by hypothesis p = κ1q + r1, then κ1q + 1 = p − r1 + 1,
which means that there are r1 points left in x. That is, see Figure 35, we have
a graph, the image of G after the slides, with fat vertices x, x̄, z, z̄; there are r1

edges connecting x with z; there are r1 edges connecting x̄ with with z̄; and there
are q − r1 edges connecting z with z̄. Now, the edge with one end in z numbered
with 1 has the other end numbered with p− r1 + 1 ∈ x; and the edge with one end
in x̄ numbered with p− r1 + 1 has the other end in z̄ numbered with q − r1 + 1.

Therefore, the new diagram is the Whitehead diagram obtained by drilling out
the canonical 2–handle of length r1 of the (q, r1)–manifold. Since the disks x̄, and z̄
were never touched, the point at infinity is a fixed point of the handle slides.
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Figure 35. After sliding z along x

Notice that if q = 1, then κ1 = p, and r1 = 0, and everything is easier: The
image graph G above, in this case, replacing the values of q and r1, has four
fat vertices x, x̄, z, z̄; there are 0 edges connecting x with z; there are 0 edges
connecting x̄ with with z̄; and there is 1 edge connecting z with z̄. That is, after
canceling the handle defined by x, we obtain the (1,0)–manifold. �

Corollary 6.3. Let r1, r2 be a pair of coprime integers, 0 < r2 < r1. Assume

r1 = κ1r2 + r3, 0 < r3 < r2

r2 = κ2r3 + r4, 0 < r4 < r3

...
...

rn−1 = κn−1rn + 1, 0 < 1 < rn
rn = κn,

with κi ≥ 1, i = 1, . . . , n.
Let G be the graph of the Whitehead diagram obtained by drilling out the canon-

ical 2–handle of length r2 of the (r1, r2)–manifold. Let G1 be the κ1–slid graph
obtained from the (r1, r2)–graph G. For i = 1, . . . , n− 1, let Gi+1 be the κi+1–slid
graph obtained from the (ri, ri+1)–graph Gi.

Then Gn is the graph of the Whitehead diagram obtained by drilling out the
canonical 2–handle of length 0 of the (1, 0)–manifold (V, α).

The point at infinity is a fixed point of these handle slides.

�
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Remark 6.4. The graph Gi in the statement of Corollary 6.3 is the graph of the
Whitehead diagram obtained by drilling out the canonical 2–handle of length ri+2

of the (ri+1, ri+2)–manifold. Then Gi is a graph with four fat vertices ξ, ξ̄, ζ, and ζ̄.
The symbols ξ and ζ stand for the symbols x and z in some order (that is, the
sets {ξ, ζ} and {x, z} are equal, but just as unordered sets). There are ri+2 edges
connecting ζ and ξ; there are ri+2 edges connecting ζ̄ and ξ̄; and there are ri+1−ri+2

edges connecting ξ with ξ̄.

Remark 6.5. Let p, q be a pair of coprime integers, and assume that p/q = [κ1, . . . , κn],
as a continued fraction, with κi ≥ 1 for each i.

(1) Write pi/qi = [κ1, . . . , κi] with pi, qi coprimes. Write p0 = 1, p−1 = 0,
and q0 = 0, q−1 = 1. It is well known that pi = κipi−1 + pi−2, and qi =
κiqi−1 + qi−2; also piqi−1 − pi−1qi = (−1)i for i ≥ 1. (Article 337 and 338
of [5]). Since κi ≥ 1, one easily shows pi > qi > 0 for i ≥ 1. In particular,
p > q > 0. Note also that pi+1 > pi.

(2) Let r, s be the two coprime integers pn−1, qn−1, respectively, and let (V, α)
be the (p, q)–manifold. Then the (r, s)–torus curve can be drawn on ∂V as
a simple closed curve, β, which intersects α exactly at the point at infinity
for ps − qr = ±1. Note that if n is even, then the point at infinity is at
the right in the Whitehead diagram, and if n is odd, it is at the left, as
in Figure 33. The curve β can be visualized on the Whitehead diagram of
the (p, q)–manifold as a set of new edges connecting the fat vertices, and
disjoint with the Whitehead graph, and a single new edge intersecting the
Whitehead graph at the point at infinity. Conversely, the curve α can be
visualized in a similar way on the Whitehead diagram of the (r, s)–manifold.

Notice that between two edges of α, there is at most one edge of β
for, p > r.

Theorem 6.6. Assume p/q = [κ1, . . . , κn] with p, q coprime, and κi ≥ 1 for each i.
Let r, s be the pair of coprime integers such that r/s = [κ1, . . . , κn−1]. Let (V, α) be
the (p, q)–manifold, and let β ⊂ ∂V be the (r, s)–torus curve such that α intersects β
exactly at the point at infinity.

If γ ⊂ V is the canonical 2–handle of length q of the (p, q)–manifold, then the
exterior E(γ) is a regular neighbourhood of α ∪ β.

Proof. Let G be the graph of the Whitehead diagram obtained by drilling out the
canonical 2–handle of length q of the (p, q)–manifold, but including the arcs of the
curve β. Call α–edges the edges of G corresponding to the (p, q)–torus curve α,
and β–edges the edges of G corresponding to the (r, s)–torus curve β.

Writing r1 = p, and r2 = q, the statement p/q = [κ1, . . . , κn] with κi ≥ 1 means:
there are integers r3, . . . , rn such that

r1 = κ1r2 + r3, 0 < r3 < r2

r2 = κ2r3 + r4, 0 < r4 < r3

...
...

rn−1 = κn−1rn + 1, 0 < 1 < rn
rn = κn.



CIRCULAR HANDLE DECOMPOSITIONS OF FREE GENUS ONE KNOTS 41

See Remark 6.5, (1). Writing ρ1 = r and ρ2 = s, the statement r/s = [κ1, . . . , κn−1]
means: there are integers ρ3, . . . , ρn−1 such that

ρ1 = κ1ρ2 + ρ3, 0 < ρ3 < ρ2

ρ2 = κ2ρ3 + ρ4, 0 < ρ4 < ρ3

...
...

ρn−2 = κn−2ρn−1 + 1, 0 < 1 < ρn−1

ρn−1 = κn−1.

Notice that the canonical 2–handle of length q for the (p, q)–manifold is the
canonical 2–handle of length q for the α–edges of G, but it is also the canonical
2–handle of length s for the β–edges of G. Then the graph Gn−1 of Corollary 6.3
(Remark 6.4) contains four fat vertices ξ, ξ̄, ζ, and ζ̄. Note rn+1 = 1; then there is a
single α–edge connecting ζ and ξ; there is a single α–edge connecting ζ̄ and ξ̄; and
there are rn− 1 α-edges connecting ξ with ξ̄. Note that ρn = 1 and ρn+1 = 0; then
there is a single β–edge connecting ξ with ξ̄ intersecting the α–edge connecting ζ̄
and ξ̄ at the point at infinity; and there are no more β–edges. The graph Gn is
obtained by sliding ζ through ξ the number κn = rn of times. Then Gn has a single
α–edge connecting ξ with ξ̄ and a single β–edge connecting ζ with ζ̄ intersecting
at the point at infinity. The corollary follows.

Notice that when q = 1, n = 1, the graph Gn−1 = G.
�

6.2. One-handledness of knots.

Theorem 6.7. If k is a non-fibered free genus one knot in S3, then k is almost
fibered.

Proof. Let k ⊂ S3 be a knot, and let F ⊂ E(k) be a genus one free Seifert surface
for k. Assume k is not almost fibered. Then, by Remark 2.3 and Corollary 3.6, k has
another genus one Seifert surface disjoint and not equivalent to F . By Corollary 5.2
there is a spine Γ = a1 ∨ a2 for F in ∂N (F ) such that a1 represents an element
conjugate to gp with p ≥ 2, for some primitive element g ∈ π1(E(F )), and a2 spoils
the disks of a1. We shall show that the existence of such graph Γ implies h(F ) = 1,
and, since F is of minimal genus, therefore, cw(k) = 4. This contradiction gives
the theorem.

By Corollary 5.1, there is an essential 2–disk ∆ ⊂ E(F ) such that ∆ ∩ a1 = ∅.
We may assume that the exterior E(∆) ⊂ E(F ) is not connected, and is the
union of two solid tori H0 and H1 with a1 ⊂ H0. There is a copy of ∆ in ∂H0;
then a1 ⊂ ∂H0−∆. Write T = ∂H0 −∆; T is a once punctured torus. A properly
embedded arc α ⊂ T is called a rel ∆ curve in ∂H0, and is visualized as the arc α
union a properly embedded arc in ∆ with the same ends as α. Or rather, we may
regard ∆ as a point at infinity of the torus T/∂∆.

We have that a1 is a (p, q)–torus curve in H1 for some q (this implies that we
have fixed a longitude-meridian pair in ∂H0; by changing the longitude-meridian
pair, we may assume that 0 < q < p). The intersection a2 ∩H0 = a2 ∩ ∂H0 is a set
of disjoint arcs c ∪ b1 ∪ · · · ∪ bm ⊂ ∂H0 with ends in ∂∆ and such that bi ∩ a1 = ∅
for each i, and the set c ∩ a1 is a single point, the base point of Γ.
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Figure 36. The (19,12) and (8,5)–torus curves

Regarding c as a rel ∆ curve, c is an (r, s)–torus rel ∆ curve in H0 with ps−qr =
±1. Since ps − qr = ±1, any other pair (r′, s′) such that ps′ − qr′ = ±1 is of the
form (r′, s′) = (r + `p, s + `q) for some integer `. Then by sliding a2 along a±1

1

several times, we obtain a new spine for F . By Remark 2.5, we may assume that the
arc c is an (r, s)–torus rel ∆ curve in H0 where, if p/q = [κ1, . . . , κn] as a continued
fraction with terms κi ≥ 1, then r/s = [κ1, . . . , κn−1].

Since b1, . . . , bm ⊂ ∂H0 − (Int(∆) ∪ a1 ∪ c) ∼= D2, then each of b1, . . . , bm are
rel ∆ curves parallel to a1.

Now, consider the graph G of the Whitehead diagram of the (p, q)–manifold
(H0, a1), and include in G the edges induced by the rel ∂ curves c, b1, . . . , bm. By
deforming the diagram, we may assume that ∆ is contained in a small neighbour-
hood of the point at infinity which is the base point of Γ, the point of intersection
of c and a1. Let γ be the canonical 2–handle of length q for (H0, a1). In the White-
head diagram, we place γ in such a way that it starts by encircling the arc c coming
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Figure 37. Slide z along x

from infinity, and then encircles the q edges belonging to a1 and whatever is in the
middle, and nothing more (that is, after encircling the last edge belonging to a1,
the arc γ does not encircle any arc belonging to c or b1, . . . , bm). See Figure 36
where the dotted line is a set of parallel arcs. We drill out γ and, by Theorem 6.6,
if we slide handles in the Whitehead diagram obtained by drilling γ out of H0, we
obtain a sequence of diagrams as in Figures 37-42. All handle slides fix point-wise
the small neighbourhood of the point at infinity, and, thus, also the disk ∆.

The resulting Whitehead graph on ∂H0 consists of four fat vertices ξ, ξ̄, ζ, ζ̄;
there is a single a1–edge connecting ξ and ξ̄, and a single c–edge connecting ζ with ζ̄
intersecting in the base point of Γ (In Figure 36, ξ = z and ζ = x). Notice that the
c–arc is actually two arcs, one connecting ζ with ∂∆, and the other connecting ∂∆
with ζ̄. Without lost of generality, this last arc contains the base-point of Γ.

Let v be a meridional disk for H1 disjoint with ∆. Then ξ, ζ and v is a system of
meridional disks for the handlebody E(γ). Write π1(E(γ)) = 〈ξ, ζ, v : −〉. Then a1

represents the element ξ, and a2 represents an element ζ̄ ·W (ξ, v) where W (ξ, v)
is a word in the letters ξ and v. Since {ξ, ζ̄ ·W (ξ, v), ζ} is a basis for π1(E(γ)),
it follows that a1 and a2 represent associated primitive elements. Then we can
find a system of disks D1, D2, D3 for E(γ) such that ai ∩Di is exactly one point,
and ai ∩ Dj = ∅ for i 6= j, i = 1, 2, and j = 1, 2, 3. Therefore, E(γ)−N (D3) is
a regular neighbourhood of Γ = a1 ∨ a2. We conclude that D3 is the co-core of a
1–handle that, together with γ, gives a one-handled circular decomposition for E(k)
as in Remark 2.2 (2). Since k is not fibered, it follows that h(k) = 1, and that k is
almost fibered. This contradiction finishes the proof of the theorem.

�
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Figure 38. Slide x along z
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Figure 39. Slide z̄ along x̄

Remark 6.8. By [10], a tunnel number one knot admits a one-handled circular
decomposition based on some not specified surface. In [12] genus one knots with
tunnel number one were classified, and it turns out that these knots are free genus
one knots. Let k be a non fibered genus one knot with tunnel number one. In
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Figure 40. Slide twice x̄ along z̄
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Figure 41. Slide twice z̄ along x̄

Example 3.8, we considered the case that k is simple, and in the proof of Theo-
rem 6.7, we considered the case that k is not simple. It follows that for these knots,
their circular width is realized with a one-handled circular decomposition based on
a minimal (genus one) free Seifert surface.
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Figure 42. A long slide of x deletes curve
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