1. GEOMETRIC TOPOLOGY

Tatsuya Arai Tsukuba College of Technology P-chaos implies distributional
chaos and chaos in the sense of Devaney with positive topological entropy

abstract Tatsuya Arai(speaker) and Naotsugu Chinen . Let f be a continuous
map from a compact metric space X to itself. The map fis called to be P-chaotic if it
has the pseudo-orbit-tracing property and the closure of the set P(f) of all periodic
points for f is equal to X. We show that every P-chaotic map from a continuum to
itself is chaotic in the sence of Devaney and distributionally chaotic with positive
topological entropy.

Sergey A. Antonyan Facultad de Ciencias, Universidad Nacional Auténoma
de México Characterizing equivariant ansolute retracts

abstractFor a compact Lie group G, we give a characterization of G-AN R’s and
G-AR’s in terms of the H-fixed point sets, where H runs the family of closed
subgroups of G. Applications will be presented.

Alexander Bykov Universidad Autrioma de Puebla Equivariant Cotelescopes
and Fibrant Spaces

abstract The general approach to the concept of a fibrant object is the following:
if in a category C some class Y. of morphisms is specified then an object Y of C
is called ¥-fibrant if for every morphism s € ¥, s : A — X, and every morphism
f: A=Y there is a morphism F' : X — Y such that FFos = f. The classical
fibrant objects appear in [5] for the closed model categories where ¥ is the class of
trivial cofibrations. A fibrant space in the sense of F.Cathey is a X-fibrant object,
where X is the class of SSD R-maps in the category of metrizable spaces ([2]). In the
talk we provide an equivariant version of a fibrant space. It is well-known ([4]) that
every compact metrizable group can be represented as an inverse limit of a sequence
of Lie groups bonded by fibrations, and therefore it is already a fibrant space in
the sense of F.Cathey. On the other hand, due to R.Palias ([3]), every compact
Lie group G is a G-ANR and hence it is a G-fibrant space. These are the basic
facts utilized in the proof of our result: every compact metrizable group G is a G-
fibrant space. Also equivariant fibrants naturally appear as cotelescopes of inverse
sequences of G-ANRs. Equivariant cotelescopes as well as equivariant S.S D R-maps
and the results of [1] can be used in the construction of the equivariant strong shape
category following the way of F.Cathey. All these facts justify the consideration of
equivariant fibrant spaces.

[1] S.Antonyan, S. Mardesi¢, Equivariant Shape, Fund. Math., 127, 1987, 213-224

[2] F. Cathey, Strong shape theory, in: Shape Theory and Geometric Topology,
Lecture Notes in Math. 870, Springer, Berlin, 1981, 216-239.

[3] R.S.Palais, The classification of G-spaces, Memoirs AMS, 36, 1960

[4] L.S. Pontrjagin, Topological groups, Princeton Univ. Press, 1939

[5] D.G.Quillen, Homotopical algebra, Lecture Notes in Math. 43, Springer, 1967

Robert Cauty Université de Paris VI, Pierre et Marie Curie Algebraic ANRs

abstract Lefschetz’s criterion characterizes ANRs among metrizable spaces in

terms of realizations of simplicial complexes. They are continuous maps from sim-

plicial complexes into the space. We study the class of metrizable spaces which

one obtains replacing in this criterion the continuous maps from complexes K to
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the space X by chain morphisms from the ordered chain complex of K to the sin-
gular chain complex of X. This new class contains the ANRs but also all locally
equiconnected metric spaces.

Robert J. Daverman University of Tennessee Manifolds homotopically deter-
mined by their fundamental groups abstract A manifold N is said to be homotopi-
cally determined by its fundamental group if each map f : N — N which induces
a 7p-isomorphism is a homotopy equivalence. Aspherical manifolds obviously have
this feature. More generally, in a 1974 paper G. A. Swarup characterized the
closed, orientable 3-manifolds with this property as those having a connected sum
decomposition with at least one aspherical factor. This talk will explore examples,
non-examples and construction techniques in all dimensions. A typical Theorem
is the following near-generalization of Swarup’s result: If N = N;# N, is a closed,
orientable, Hopfian n-manifold such that N; is aspherical and 7 (N3) has no free
factor in any free product decomposition, then N is homotopically determined by
its fundamental group. Much of the work on the topic is joint with Y. Kim.

Tadeusz Dobrowolski Pittsburg State University, U.S.A. Near-selections and
extensions without local convexity abstract The aim of the talk is to characterize
the AR-property in convex subsets of metric linear spaces without local convexity.
This will be done in terms of certain near-selections. Roughly speaking, the char-
acterization theorem states that a convex set in a metric linear space is an AR if
and only if lower semi-continuous functions with finite-dimensional compact convex
values admit near selections. Applications will be presented. This is a joint work
with Jan van Mill.

Alexander Dranishnikov University of Florida at Gainesville, USA Dimen-
sion theory approach to the Novikov Conjecture

abstract Asymptotic dimension asdimX of a metric space X was introduced by
Gromov as a concept which gives an invariant of finitely generated groups. Discrete
groups here are considered as metric spaces taken with the word metric. This
invariant proved to be useful for the Novikov Higher Signature conjecture. First,
Gouliang Yu proved the (rational) Novikov Conjecture for groups I" with asdimI’ <
0o. Later the integral Novikov Conjecture for asymptotically finite dimensional
groups was proved independently by A. Bartels, Carlsson-Goldfarb (algebraic K-
theory) and D-Ferry-Weinberger. Our approach uses the Higson compactification
of groups.

E. Elfving University of Helsinki G-ANR’s and G-CW complexes for proper
actions of Lie groups.

abstract In [2] proper locally linear actions of Lie groups on topological manifolds
were studied. Proper locally linear actions form a generalization of smooth proper
actions. In the case of smooth proper actions of Lie groups it is known that every
smooth proper G-manifold can be given an equivariant triangulation and hence in
particular a G-CW complex structure, see [3].

In [2] the main theorem was

Theorem 1. Let G be a Lie group and M a proper locally linear G-manifold.
Then M has the G-homotopy type of a G-CW complex.
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In [1] we studied adjunction spaces and unions of G-ANE’s for actions of a locally
compact group G. We established equivariant versions of the Borsuk-Whitehead-
Hanner theorem and of the Kodama theorem. As an application we proved that
every proper G-CW complex is a G-ANE if G is a Lie group.

Our aim is to generalize the above mentioned Theorem 1 to arbitrary G-ANR’s.
This is joint work with S. Antonyan.

References.

[1] S. Antonyan, E. Elfving and A. Mata-Romero: Adjunction spaces and unions
of G-ANE’s, Topology Proceedings, Vol. 26, No. 1, 1-28 (2001-2002).

[2] E. Elfving: The G-homotopy type of proper locally linear G-manifolds II,
manuscripta math. 105, 235-251 (2001).

[3] S. llman: Existence and uniqueness of equivariant triangulations of smooth
proper G-manifolds with some applications to equivariant Whitehead torsion, J.
Reine Angew. Math. 524, 129-183 (2000).

Jerzy Dydak University of Tennessee Algebras derived from dimension theory

abstract The dimension algebra of graded groups is introduced. With the help of
known geometric results of extension theory that algebra induces all known results
of the cohomological dimension theory. Elements of the algebra are equivalence
classes dim(A) of graded groups A. There are two geometric interpretations of those
equivalence classes:
1. For pointed CW complexes K and L, dim(H.(K)) = dim(H.(L)) if and
only if the infinite symmetric products SP(K) and SP(L) are of the same ex-
tension type (i.e., SP(K) € AE(X) iff SP(L) € AE(X) for all compact X).
2. For pointed compact spaces X and Y, dim(H*(X)) = dim(H*(Y")) if and
only if X and Y are of the same dimension type (i.e., dimg(X) = dimg(Y") for all
Abelian groups G).

Dranishnikov’s version of Hurewicz Theorem in extension theory becomes dim(m, (K)) =
dim(H,(K)) for all simply connected K.

The concept of cohomological dimension dim 4(X) of a pointed compact space
X with respect to a graded group A is introduced. It turns out dim4(X) < 0 iff
dim 4(n)(X) < n for all n € Z. If A and B are two positive graded groups, then
dim(A) = dim(B) if and only if dim4(X) = dimp(X) for all compact X.

Hanspeter Fischer Ball State University Generalized universal covering spaces
and the shape group
abstract It is known that if a topological space X admits a (classical) universal
covering space, then the natural homomorphism ¢ : 71 (X) — 71 (X) from its fun-
damental group to its first shape homotopy group is an isomorphism. We present
a partial converse: a path connected topological space X admits a generalized uni-
versal covering space if ¢ : m1(X) — 71 (X) is injective. This generalized notion of
universal covering p : X — X at which we arrive, enjoys most of the usual proper-
ties with the possible exception of evenly covered neighborhoods. It is universally
characterized by the following three properties:
(1) X is path connected, locally path connected and simply connected;
(2) p: X — X is a continuous surjection;
(3) for every continuous f : (Y,y) — (X, ), with Y path connected, locally path
connected and simply connected, and for every # in X with p(Z) = z, there
exists a unique continuous lift g : (Y,y) — (X,%) with f = pog.



4

Additional properties of this generalized universal covering include:
(i) Aut(X B X) = m (X);

(ii) p: X — X is open if and only if X is locally path connected;
(iii) if X islocally path connected and semilocally simply connected, then p : X —

X agrees with the usual universal covering.

Spaces X for which ¢ : 1 (X) — 71 (X) is known to be injective include all subsets
of the Euclidean plane, all 1-dimensional compacta, as well as boundaries of certain
Coxeter groups.

Tetsuya Hosaka Utsunomiya University, Japan On splitting theorems for
CAT(0) spaces

abstract In this talk, we introduce some splitting theorems for CAT(0) spaces
and compact geodesic spaces of non-positive curvature. A geometric action on a
CAT(0) space is an action by isometries which is proper and cocompact. We first
proved the following splitting theorem which is an extension of a result in [1].

Theorem 1 Suppose that a group I' = I’y x I'y acts geometrically on a CAT(0)
space X. If 'y acts cocompactly on the convex hull C(T';1z) of some I'y-orbit, then
there exists a closed, convex, I-invariant, quasi-dense subspace X' C X such that
X' splits as a product X; x X» and there exist geometric actions of T'; and 'y on
X1 and X», respectively. Here each subspace of the form X; x {x2} is the closed
convex hull of some I'1-orbit.

Using this theorem, we showed some splitting theorems for CAT(0) spaces which
are extensions of some results in [1]. As an application of these splitting theorems,
we obtain the following theorem.

Theorem 2 Let Y be a compact geodesic space of non-positive curvature. Sup-
pose that the fundamental group of Y splits as a product I' = I'y x 'y and that T’
has trivial center. Then there exists a deformation retract Y’ of Y which splits as
a product Y; x Y5 such that the fundamental group of Y; is T'; for each ¢ = 1, 2.

A CAT(0) group T is said to be rigid, if T' determines the boundary up to
homeomorphism of a CAT(0) space on which T" acts geometrically. Then we denote
AT as the boundary of the rigid CAT(0) group I'. Concerning rigidity of products
of rigid CAT(0) groups, we obtained the following theorem.

Theorem 3 If I'; and I'y are rigid CAT(0) groups, then so is I'y x I'y, and the
boundary 9(I'y x I's) is homeomorphic to the join OT'; * OT'2 of the boundaries of
Fl and F2.

[1] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature,
Springer-Verlag, Berlin, 1999. [2] T. Hosaka, On splitting theorems for CAT(0)
spaces and compact geodesic spaces of non-positive curvature, preprint.

Soren Illman University of Helsinki Hilbert’s fifth problem and the very-strong
C®° topology

abstract First we discuss Hilbert’s fifth problem and then we go on to describe
a technical point in the proof of the author’s contribution to the fifth problem.

In his fifth problem Hilbert asks the following. Given a continuous action

:GxM-—>M

of a locally euclidean group G on a locally euclidean space M, can one choose
coordinates in G' and M so that the action @ is real analytic?
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In the special case when G = M there is an affirmative answer. This is the
celebrated result, due to Gleason, Montgomery and Zippin, which says that every
locally euclidean group is a Lie group.

The answer to Hilbert’s question in complete generality is no. However the
following result was proved by the author.

Theorem. Let G be a Lie group which acts on a smooth manifold M by a smooth
proper action (in fact smooth Cartan action is enough). Then there exists a real
analytic structure 8 on M, compatible with the given smooth structure on M, such
that the action of G on Mp is real analytic. Here smooth means C* smooth, and

the result is given in this form in [1]. The theorem also holds when smooth means
C" smooth, 1 < r < oo, by essentially the same proof. It is in fact the proof in the
C* case that is more demanding, since it requires the use of the very-strong C*
topology, instead of the more common strong C* topology.

In the C* case the proof of the fact that the found real analytic structue g is
compatible with the given smooth structure on M, makes use of the very-strong
topology. It is in the following glueing lemma, where one glues together two C™
maps to obtain a C°° map, that one needs to use the very-strong C* topology.
Lemma (see [2]). Let f: M — N be a K-equivariant C* map between C* K-

manifolds, where K is a compact Lie group. Then there exists an open neighborhood
N of f|U in CS%’K(U, N) such that the following holds: If h € N and we define
E(h): M — N by

h(z), zeU

flx), zeM-TU,

then E(h) is a K-equivariant C* map. Furthermore E: N — ng’K(M, N), h—
E(h), is continuous.

[1] S. llman, Every proper smooth action of a Lie group is equivalent to a real
analytic action: a contribution to Hilbert’s fifth problem, Ann. Math. Stud. 138
(1995), 189-220.

[2] S. Illman, The very-strong C™ topology on C*°(M,N) and K -equivariant
maps, Osaka J. Math. 40 (2003), 409-428.

James Keesling University of Florida Inverse Limits of Tent Maps

abstract It has been a long-standing problem to classify the inverse limits of the
form (I, fs) where f, is a member of the tent family, fs(z) = min{s-z,s- (1 —z)}
1 < s <2 Let fs and f; both be tent maps having turning point periodic. Lois
Kailhofer has shown that in this case (I, fs) is homeomorphic to (I, f;) if and only
if s =t.

In joint work with Louis Block, Slagjana Jakimovic, and Louis Kailhofer we
have given a shorter proof of this result. The proof also shows that certain home-
omorphisms are isotopic to a power of the shift map on the inverse limit space
o’}s : (I, fs) = (I, fs) for some k € Z. In particular, it is shown that if h : (I, fs) —

(I, fs) is any homeomorphism, then for some n = 0,1,2,... h™ is isotopic to some
‘71}3' It is likely, but still remains open whether every homeomorphism h is isotopic
to some o .

The general inverse limit problem remains. It is conjectured that (I, fs) being
homeomorphic to (I, f;) implies that s = ¢ without assuming that the turning
points of fs and f; are periodic. The techniques developed in the new proof of



Kailhofer’s theorem suggest an approach to proving this general problem. We will
discuss the progress being made in this direction.

Akira Koyama Shizuoka University Contractible polyhedra which are not em-
bedded into the product of any graphs

abstract We have discussed several n-dimensional compacta which are not em-
bedded into the product of any n 1-dimensional compacta. Then we represented
criterions by words of cohomology groups. Thereby we did not use any geometric
property and required relatively strong cohomological properties. Here we are dis-
cussing a class of manifold-like n-dimensional compacta which are not embedded
into the product of any n 1-dimensional compacta. As its consequnece we show the
existence of 2-dimensional contractible polyhedra which are not embedded in the
product of two any graphs.

References

1. J. Dydak and A. Koyama, Compacta not embeddable into Cartesian products
of curves, Bull. Acad. Polish. Sci. Math. 48(1)(2000), 51-56.

2. A. Koyama, J. Krasinkiewicz and S. Spiez, On embeddings of compacta into
products of curves, preprint.

F. William Lawvere SUNY Buffalo from bernoulli to Euler, guided by Volterra
and Hurewicz

abstract A contravariant functor of structure (such as open or closed sets, con-
tinuous or smooth complex functions, etc.) is an important derived structure of
categories C of cohesion (such as continuous, smooth, or combinatorial spaces).
However, such cannot be the fundamental structure if C is to satisfy the elementary
feature of general exponentiation, as required by Bernoulli and most later practi-
tioners of the calculus of variations, made more explicit by Volterra and Hadamard.
Bernoulli’s principle that a functional YX* — R is analytic (or continuous, or...) iff
it is so when composed with any similar parameterized figure (curve, sequence,
...) permits reduction of the analysis to manageable types, namely to functions on
X x P with P a parameterizer. Thus, as Hurewicz clarified with his definition of
k-spaces, the basic structure of a suitable category needs to be a covariant one such
as “P-shaped figures” C(P, —) in order to achieve the needed exponential law. Of
course, once geometric structure C(P,—) has been specified for value spaces such
as R = Sierpinski space or R = the complex plane, then derived algebraic structure
can also be contravariantly defined for general spaces X in terms of P-natural maps
C(P,X) — C(P,R). Asin algebraic geometry, a small number of function-types R
is often coadequate in a larger category of figure-types P which is in turn adequate
for a whole exponentially-closed category. Euler’s principle, that reals are ratios of
infinitesimals, enables pushing this function/figure dialectic one step deeper if we
explicitly exploit exponentials of infinitesimal spaces T'; the spaces for which every
connected component contains exactly one point include among their exponential
spaces all R™.

Fred E.J. Linton Wesleyan University An unnatural isomorphism for Real
Banach spaces, and allied phenomena. abstract If we rotate the real plane about
the origin by 45 degrees, and then dilate uniformly in all directions by a factor
of \/5, we realize a linear isometry between the plane with the /; norm and the



plane with the sup norm. This observation, which is surely not new, seems to
susceptible of virtually no generalization whatsoever: the talk will give details of
an assortment of attractive-seeming generalization-candidates, and how they fail.
One curious positive result comes up amidst the debris of failed candidates: yet
another norm-characterization (surely also not new) of the 1-dimensional Banach
space.

Luis Montejano Instituto de Matemdticas. UNAM Applications of topology
to Discrete Geometry

abstract We shall review our work in transversal Theory and Affine configurations
of flats. In particual we shall considere the role of the topological ideas in these
results.

Manuel Alonso Morén Universidad Complutense de Madrid Upper semifi-
nite hyperspaces: A common framework for the computational and the topological
treatment of attractors in flows

Abstract In this talk we show how to use the upper semifinite topology in the
hyperspace of a compact metric space in oder to describe some shape properties and
some fundamentals in computational topology used to study attractors in flows. In
particular we study the concept of e-connectedness used mainly by Vanessa Robins.

Seithuti P. Moshokoa University of South Africa Extensions of quasi-uniformly
continuous maps

abstract We discuss the problem of extending a quasi-uniformly continuous map
[ (X,d) = (Y,]]-]]) from a quasi-pseudo metric space into a biBanach space to
(X*,e) a bicompletion of (X,d). We introduce a class of maps which preserves d*-
Cauchy sequences and present a result concerning extensions of these maps. Our
result extends the Classical result concerning extensions of uniformly continuous
maps between metric spaces.

Carlos Prieto IMUNAM Transfers for ramified coverings and equivariant ho-
mology and cohomology (jt. with M. Aguilar)

abstract We define a transfer in homology and cohomology for ramified covering
maps and use it to prove some results on the homomorphisms induced by orbit
maps of actions of finite groups.

Taras Radul Universidad de los Andes, Colombia On the transfinite extension
of asymptotical inductive dimension

abstract Asymptotic dimension theory was founded by M.Gromov for studying
invariants of discrete groups [1]. A.Dranishnikov has introduced the asymptotic in-
ductive dimension asInd [2]. M.Zarichnyi proposed consider the transfinite exten-
sion trasInd of asInd analogically to the transfinite extension of the usual inductive
dimension. We prove that this extension is trivial, more exactly:

Theorem If there exists trasIndX for some metric proper space X then trasIndX
w.

M.Gromov. Asymptotic Invariants of Infinite Groups, Geometric Group Theory.

v.2. Cambrige Univ. Press, 199

A Dranishnikov. On Asymptotic Inductive Dimension. JP Jour. Geometry and
Topology, 2001, 1, 239-247.



Leonard R. Rubin University of Oklahoma Resolutions in Extension Theory

abstract The talk will deal with the theory of resolutions in extension theory.
The first in this class of results was the Edwards-Walsh resolution theorem that was
proved by John Walsh in 1981: If X is a metrizable compactum with dimz X < n,
then there exist a metrizable compactum Z with dim Z < n and a cell-like map 7 of
Z onto X. This became an important step in A. Dranishnikov’s affirmative answer
to the Alexandroff question of whether a metrizable compactum simultaneously
could be of infinite dimension and finite integral cohomological dimension.

After Walsh’s publication, many other authors considered aspects of the question
of resolutions, either in different classes of spaces, with respect to cohomological
dimension for groups different from Z, or finally with respect to extension theory.
Our presentation will attempt to trace these steps and at the end to indicate some
of the most recent advances in this area.

Francisco R. Ruiz del Portal Universidad Complutense de Madrid A Poincaré
formula for the fixed point index of homeomorphisms of surfaces

abstract Let U C R? be an open subset and let f : U — R? be an arbitrary local
homeomorphism such that Fiz(f") = {p} for every n € N. We compute geomet-
rically the fixed point index of f™ at p, i(f™,p), in terms of the stable/unstable
manifolds and the Leau-Fatou petals around p. We obtain in this way a sort of
Poincaré formula without differentiability assumptions.

Jose M. R. Sanjurjo Universidad Complutense (Madrid) The Hopf bifurcation
and shape theory

abstract The subject of the Hopf bifurcation had its origins in the work of
Poincaré and since then it has been extensively studied by many authors, including
Andronov. Hopf’s fundamental contributions appeared in 1942. The Hopf bifurca-
tion is originally related to the development of periodic orbits from a stable fixed
point of a flow defined in the plane or in the Euclidean space. There is a richness
of topological features in this theory making it specially suited to be studied with
the techniques of geometric topology. We use, in particular, shape theory to study
bifurcations of flows in manifolds and the global properties of some stable subsets
which appear naturally in this context.

E.D.Tymchatyn University of Saskatchewan Simultaneous Extensions of Met-
rics

abstract by E.D.Tymchatyn and A.Zagorodnyuk We consider the problem of
continuous simultaneous extension of partial (pseudo-)metrics on a metric space
X. If X is also compact then such extensions exist (Tymchatyn-Zarichnyi,2004).

Theorem Let X be a metric space. There exists a continuous extension operator
from the metric space of all Lipschitz equivalent partial pseudo-metrics on X to
the space of all pseudo-metrics on X.

Alberto Verjovski IMUNAM On the moduli space of certain smooth codi-
mension one foliations of the 5-sphere by complex surfaces

abstract In this talk, I will talk about recent joint work with Laurent Meersseman
(Université de Rennes T).

I will first describe the set of all possible integrable CR-structures on the smooth
foliation of S# constructed in [1]. T will give a specific concrete model of each of
these structures. I wll show that this set can be naturally identified with Cx C x C.
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Adapting the classical notions of coarse and fine moduli space to the case of a
foliation by complex manifolds, I will indicate the prooof that the previous set,
identified with C¥, defines a coarse moduli space for the foliation of [1], but that
it does not have a fine moduli space. Finally, using the same ideas I will also
indicate why the standard Lawson foliation on the 5-sphere can be endowed with
CR-structures but none of these is integrable.

[1] L. Meersseman and A. Verjovsky. A smooth foliation of the 5-sphere by
complex surfaces. Ann. of Math. 156 (2002), 915-930.

Tatsuhiko Yagasaki Kyoto Institute of Technology Homotopy types of spaces
of embeddings of compact polyhedra into 2-manifolds

abstract The homotopy type of connected component of homeomorphism groups
of connected 2-manifolds have been classified by M. E. Hamstrom, G. P. Scott et
al. in the compact case and by the author in the noncompact case. In this talk we
consider the problem of classifying the homotopy type of connected components of
spaces of embeddings of compact connected polyhedra into 2-manifolds. Suppose M
is a connected 2-manifold and X is a compact connected subpolyhedron of M with
respect to some triangulation of M. Let £(X, M) denote the space of topological
embeddings of X into M with the compact-open topology and let £(X, M)q denote
the connected component of the inclusion ix : X C M in £(X,M). We will
describe the homotopy type of £(X, M) in terms of the subgroup ix,m(X) =
Im[ix, : m(X) —» m(M)]. If X is a point of M then £(X,M) = M, and if
X is a closed 2-manifold then X = M and £(X, M), coincides with the identity
component of homeomorphism groups of M. Below we assume that X is neither a
point nor a closed 2-manifold.

Suppose ix ,m1(X) is not a cyclic subgroup of m (M).
(1) E(X,M)o ~* if M % T2, K?.
(2) E(X,M)o ~ T? if M = T2,
(8) E(X,M)o ~ St if M 2 K2,
Suppose i x,m1(X) is a nontrivial cyclic subgroup of w1 (M).
(1) E(X, M)y ~ St if M P2 T? K2.
(2) E(X,M)q ~ T2 if M = T2,
(3) Suppose M = K2.
(i) E(X, M)y ~ T2 if X is contained in an annulus which does not separate
M.
(ii) E(X, M)y ~ St otherwise.
(4) Suppose M = P2,
(1) E(X,M)o ~ SO(3)/Zs if X is an orientation reversing circle in M.
(i5) E(X, M) ~ SO(3) otherwise.

Here S' is the circle, T2 is the torus, P2 is the projective plane and K2 is the Klein
bottle. Finally consider the case where X is null homotopic in M. We choose a
Riemannian manifold structure on M and denote by S(T'M) the unit circle bundle
of the tangent bundle TM. When M is nonorientable, M denotes the orientable
double cover of M. Suppose ix,m(X)=1 (i.e, X ~ % in M).

(1) E(X,M)g ~ S(TM) if X is an arc or M is orientable.
(2) E(X, M)y ~ S(TM) if X is not an arc and M is nonorientable.

Since £(X, M) is a topological £2-manifold, the topological type of £(X, M)g is
determined by the homotopy type of £(X, M)o.



