1. Set Theory

Stefan Geschke Free University of Berlin A dual open coloring axiom abstract I will discuss a dual of the version of the Open Coloring Axiom that was introduced by Abraham, Rubin, and Shelah and indicate how this dual OCA follows from a statement about continuous colorings on Polish spaces that is known to be consistent. I will also mention some consequences of the new axiom.

Neil Hindman Howard University Discrete n-tuples in Hausdorff spaces

abstract We investigate the following three questions: Let $n \in N$. For which Hausdorff spaces X is it true that whenever Γ is an arbitrary (respectively finite to one) (respectively injective) function from N^n to X, there must exist an infinite subset M of N such that $\Gamma[M^n]$ is discrete? Of course, if n=1 the answer to all three questions is "all of them". For $n \geq 2$ the answers to the second and third questions are the same; in the case n=2 that answer is "those for which there are only finitely many points which are the limit of injective sequences". The answers to the remaining instances involve the notion of n-Ramsey limit. We show also that the class of spaces satisfying these discreteness conclusions for all n includes the class of F-spaces. In particular, it includes the Stone-Čech compactification of any discrete space.

Justin Tatch Moore Boise State University Recent developments in basis problems

abstract I will present the following ZFC result.

Theorem: There is a hereditarily Lindelöf, non-separable space.

One immediate consequence is that the uncountable regular topological spaces do not have a three element basis. The combinatorial object which makes the construction work also gives a number of other examples. In particular it produces a binary relation R which is neither below $\omega \cdot \omega_1$ nor above $[\omega_1]^{<\omega}$ in the Tukey order. It also gives an example of a function c from $\omega_1 \times \omega_1$ to ω_1 which takes all values on any product of uncountable sets.

A.A. Salama Department of Mathematics - Faculty of Education - Suez - Compactness in Fuzzy Topological Spaces

abstract The purpose of this paper is to introduce and studied the concept of -compactness in the light of the concept of -shading in a fuzzy setting. A characterization of -compactness is given by using the concept of -finite intersection property due to [1]. We define the notion of fuzzy T2-space and by using it we give some properties of -compactness. Also the image and the inverse image of compactness under some types of functions are investigated. Keywords: Fuzzy topological spaces, fuzzy -compactness, fuzzy -compactness, fuzzy -near compactness, fuzzy -continuity, fuzzy weakly -continuity, fuzzy T2-space, fuzzy -open sets.

Juris Steprans York University Combinatorial questions associated with cardinal invariants of measure

abstravt The problem of obtaining models oof set theory where all sets of reals of size \aleph_1 are null yet there are sets of reals of cardinality \aleph_1 that are not null with respect to other natural measures involves establishing combinatorial lemmas about finite measure spaces. These will be discussed.

1