1. SET-THEORETIC TOPOLOGY

Domingo Alcaraz Candela Universidad Politécnica de Cartagena Topologi-
cal entropy for endommorphisms of totally bounded

abstract We analyze the relationship between the Bowen’s entropy of a topo-
logical endomorphism « on a totally bounded (abelian) topological group G and
the Bowen’s entropy of its continuous extension to the Weil completion of G. The
infinitude of Bowen’s entropy for group endomorphisms of totally bounded abelian
groups is studied in the following two aspects:

(i) by providing a wealth of zero entropy endomorphisms whose extension to the
completion of the group has infinite entropy;

(ii) by establishing smallness of the class @ frakG of compact abelian groups
without endomorphisms of infinite entropy.

J. Juan Angoa Amador Facultad de Fisico Matemdticas, BUAP Spaces of
continuous functions, ¥-products and box topology

abstract For a topological space X, we will denote by X the set of its isolated
points and X; will be equal to X \ Xo.C(X) denotes the space of real-valued
continuous functions defined on X. OOR" is the Cartesian product R* with its box
topology, and Cy(X) is C(X) with the topology inherited from OR*. By C(X;) we
denote the set {f € C(X1) : feanbecontinuouslyextendedtoallof X }. A space X is
almost-w-resolvable if it can be partitioned by a countable family of subsets in such
a way that every non-empty open subset of X has a non-empty intersection with
the elements of an infinite subcollection of the given partition. We analyze C(X)
when X is F, and prove: (1) for every T} topological space X, if Xg is Fy; in X,
and () # X1 C clxXo, then Co(X) ~ ORX; (2) for every Tychonoff space X such
that Xg is F,, clx XoNX; # 0 and X \ ¢l x X is almost-w-resolvable, then Ch(X)
is homeomorphic to a free topological sum of > |C(X1)| copies of ORX?, and, in
this case, Co(X) ~ ORX° if and only if |C(X1)| > 2/%°/. We also analyze Co(X)
when |X;| = 1 and when X is countably compact, and prove that the ¥-product
Y¥5R* with the box product topology is not homeomorphic to OR? for any § when
cof(6) > No.

Liljana Babinkostova Boise State University Screenability and classical se-
lection principles

abstract In this presentation we discuss the relationship between the selection
principle S¢(A, B) and the classical selection principles S¢in(A, B) and Si(A4, B).

Taras Banakh and Murat Tuncali Ivan Franko Lviv National University and
Nipissing University Suslinian continua and “connected” versions of some classical
topological cardinal invariants

abstract We introduce several cardinal invariants related to the Suslinian prop-
erty of continua. Following A.Lelek we say that a continuum X is Suslinian if
it contains no uncountable disjoint family of non-degenerated subcontinua. This
property leads to the cardinal invariant ¢(X) = sup{|C| : C is a disjoint family
of non-degenerate subcontinua in X} defined for any continuum X. The cardinal
function ¢(-) can be considered as a “connected” analogue of the cellularity where
non-degenerate subcontinua paly the role of open sets. Following this ideology we
can also introduce “connected” counterparts of other cardinal invarinats such as
density, weight, m-weight. In particular, a “connected” analogue of the density is
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d(X) = min{|D| : D is a subset of X meeting each non-degenerate subcontinuum}.
The definitions of &(X) and d(X) can be extended to all Tychonov spaces X let-
ting ¢(X) = min{é(Y) : Y is a continuum containing X} and similarly for d(X).
Unlike their classical originals, the cardinal functions &(-) and d(-) are monotone
with respect to taking subspaces.

The main our result asserts that the weight w(X) of any Tychonov space is
< min{d(X),&(X)*}. Moreover, under the generalized Suslin Hypothesis, w(X) <
¢(X). Consequently each Suslinian continuum is hereditarily decomposable, has
weight < ¥y (and is metrizable if the Suslin Hypothesis holds). This answers one
question of D.Daniel, J.Nikiel, L.B.Treybig, M.Tuncali and E.D.Tymchatyn. Each
compact space X with w(X) > ¢(X) is the limit of an inverse well-ordered spectrum
of length &(X )™ consisting of compacta with weight < ¢(X) and monotone bonding
maps.

If X is a space with &(X) < 2%, then rim-weight of X is < &(X) and &(X) <
w(X) < &X)*t. Tt is clear that &(X) < d(X) for any space X and &(L) < d(L)
for a Suslin line L. On the other hand, we do not know if there is a metrizable
continuum with &(X) < d(X).

Jorg Brendle The Graduate School of Science and Technology, Kobe University
Measure and Category in Generalized Cantor Spaces

abstract For a cardinal \, we consider the generalized Cantor space 2* equipped
with the product topology and product measure as usual. Let M), denote the
meager ideal on 2* and Ny, the null ideal on 2*. Notice that every member of M)y
is contained in A € M) with countable support which means there are A € [A]*°
and A*sub2* meager such that A = {z € 2* : areA € A*}. Thus M, and M = My,
are rather similar. An analogous comment applies to Ny and N = Ny,. A number
of people, including Cichoni, Fremlin, Kraszewski, and Miller, have investigated
cardinal invariants related to the M, and the Ny. For example, add(M),) = ¥, and
cof (My) = max{cof(M),cof ([\]¥°)} for A > R}, cov(My,) is decreasing in A and
stabilizes from some A < cc onwards. Similarly for V.

Given a stationary set Ssubw;, g is the combinatorial principle asserting the
existence of a sequence laA, : a € S is a limit ordinal and A, is cofinal in ara such
that for all A € [w1]™ there is o with A,subA. & abbreviates &,,,. & easily entails
cov(My,) = cov(Ny,) = X;. Fuchino, Shelah, and Soukup proved the consistency
of & with cov(M) = cc > Ry. A fortiori, their model satisfies cov(M) > cov(My,).
We subsequently obtained the analogous consistency result for the null ideal.

Recently we proved:

Theorem. It is consistent that cov(M) = cc > Ny and &g holds for every
stationary set S.

This extends the result of Fuchino, Shelah, and Soukup and answers a question
of theirs.

Theorem The cov(M,) may simultaneously assume any finite number of distinct
values.

This answers a question of Kraszewski.

The purpose of our talk is

e to give an overview of results on cardinal invariants of the meager and null
ideals on generalized Cantor spaces,

e to sketch proofs of Theorems 1 and 2 above, and

e to survey open problems in the area.



Dennis Burke Miami University, Oxford, Ohio Spaces with a sharp base

abstractJoint work with Zoltan Balogh.

The property of having a sharp base is not preserved under a perfect map.
Example. There exists a space X with a sharp base and a perfect mapping f :
X — Y onto a space Y which does not have a sharp base. It is known that a
spaces with a sharp base have a point-countable sharp base. This can be sharpened
to “point-finite” on the set of isolated points. Theorem. If X has a sharp base
then X has a point-countable sharp base which is point-finite on the set H of
isolated points. (Hence H is an F, set.) This theorem follows from a more general
combinatorial argument about certain {0, 1} matrices on k X k.

Agustin Contreras Carreto Fucultad de Ciencias Fisico-Matemdticas de la
BUAP Some properties of cardinal functions wl, qwl, aql, ac, lc and ¢l

abstract One of the known equalities is the Bell-Ginsburg-Woods’s inequality: if
X is a Ty—space, then | X| < 2@(X)x(X) 1In this talk we are going to introduce the
cardinal function qwl, wich satisfices qwl(X) < wi(X), for every topological space;
and we will to establish the following most general result:if X is a Ty—space, then
|X| < 20@HXX(X) | Later we give an example to shows that the our result can give
better estiamtion than one of Bell-Ginsburg-Woods’s inequality. Moreover we will
present some reflection properties for cardinal functions wl, qwl, agl, ac, Ic and gl.

Dikran Dikranjan Udine University Separation via sequential limit laws in
topological groups

abstract Let (u,) be a sequence of integers. We say that an element z of a
topological group G satisfies the sequential limit law (SLL, in brief) (u,), if the
powers z¥" tend to eg.

Motivated by the definition of Ty and 7} separation axioms for topological spaces
and replacing points x by cyclic subgroups (z), we propse separation axioms Gy, Gy
and G, for a topological group X as follows:

(a) X is Gy, if for distinct (z) and (y) in X there exists a SLL (u,) such that
either x satisfies (u,) while y does not satisfy (u,), or y satisfies (u,) while x does
not satisfy (up);

(b) X is G, if for every y in X that does not belong to (z) there exists a SLL
(up,) such that x satisfies (u,) while y does not satisfy (uy);

(¢) X is Go, if for every x in X there exists a SLL (u,) such that z satisfies (u,),
while no y that does not belong to (z) satisfies (uy).

Replacing the sequence of integers (u,) by a sequence of characters of X and
asking convergence of u,,(z) to 1 in the circle group T instead of the above defined
SLL (u,), one can define similarly separation axioms Sy, S; and Ss for a topological
group X. Then:

1. Go, G1 and G5 coincide for any non-discrete locally compact group X and are
equivalent to X being isomorphic to T.

2. §p and & coincide for any topological abelian group X and are equivalent to
X being maximally almost periodic.

3. A topological abelian group X satisfies Ss iff its Bohr topology has countable
pseudocharacter.

Szymon Dolecki Mathematical Institue of Burgundy Combinatorics in conver-
gence theory



abstract Examples of combinatorial problems arising in topology and conver-
gence theory will be presented. Estimates of sequential order of finite products of
sequential topologies in terms of nodalities lead to certain transfinite combinatorial
problems [1]. Study of irregularity numbers of pretopologies leads to combinatorics
of subintervals of some trees [2].

References

[1] Dolecki, S., Nogura T., Sequential order of finite products of topologies,
Topology Proc. 25 (2002), Summer 2000, pp. 105-127.

[2] Dolecki, S., Gauld, D., Irregularity, to appear.

Stefano Ferri Universidad de los Andes, Bogotd, Colombia. Continuity in
Topological Groups

abstract A topological group is a group equipped with a (Hausdorff) topology
such that both multiplication and inversion are continuous mappings. However, in
certain cases one can deduce that a group G with a topology is a topological group
under less restrictive assumptions. For example if G is a Baire metrizable space
one can deduce that G is a topological group under the only assuption that mul-
tiplication is a separately continuous mapping. In this talk we consider a group G
equipped with a Baire metrizable topology and prove that, under these assumptions,
if right translations are continuous and left translations are almost-continuous, then
G is a topological group. This is joint work with Salvador Herndndez Mufioz and
Ta-Sun Wu.

Adalberto Garcia Maynez Instituto de Matemdticas, UNAM, México Upper
bounds for uniform weights

abstract Consider a Tychonoff space (X, 7T) and a compatible uniformity ¢/ on
X. We denote by w(X,U) the minimum possible cardinality of a basis of U. If
(X,T) is not a discrete space, we know Xy < w(X,U) and 8¢ = w(X,U) implies
that X is metrizable. We prove that always w(X,U) < z(X x X), where for every
space Y, z2(Y) denotes the cardinality of the family of zero subsets of Y. If U/ is
totally bounded, we have a better upper bound, namely w(X,U) < z(X). If U,
is the fine uniformity of (X, 7T), we know that w(X,U,) < Ng if and only if the
space X is metrizable and the set of limit points X is compact. Is it true that
w(X,U) < z(X)? this may be a forcing problem. If 60X is the density of X, we
know 6X < 2(X) < 2(X x X) < 29X 50 if we assume the GOH, 6X and 2°X are
the only possible values of z(X) and z(X x X). The task is very clear although
it might be very difficult) : Using the example in ZFC of a Tychonoff space X
such that z(X) < z(X x X), calculate w(X,U). The talk will concentrate on the
methods to obtain upper bounds for uniform weights.

Chris Good University of Birmingham, UK Inhomogeneities in inverse limits
of tent maps.

Gary Gruenhage Auburn University Paracompact ordered spaces are base-
paracompact

abstract J.E. Porter defined a space X to be base-paracompact if X has a base
B of cardinality the weight of X such that every open cover of X has a locally finite
refinement by members of B. He proved that paracompact ordered spaces of weight
R, (or less) are base-paracompact, and asked if all paracompact ordered spaces are
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base-paracompact. We show that they are. We should remark that Porter also
asked whether every paracompact space is base-paracompact; this is still unsolved.

Yasunao Hattori Shimane University, Japan On representations of spaces by
unions of locally compact subspaces

abstract Vitalij A.Chatyrko, Yasunao Hattori and Haruto Ohta In this talk, we
shall discuss the possibility of different presentations of (locally compact) spaces as
unions or disjoint unions of locally compact subspaces. We begin with an observa-
tion of locally closed sets. A subset A of a space X is called a locally closed (we
say here a G.,-set in X) if there are a closed subset F' and an open subset O of X
such that A = F'N O. Furthermore, we put G.,(X) = {A: Ais a Gep-set in X }.

Proposition. For every space X, G.o(X) is a semiring.

Corollary. Let A = U, A;, where A; € Geo(X) for every i =1,2,...,n.

(1) There are finitely many disjoint sets By, ..., By € Geo(X) such that A =
Ut_, B; and for every i, there is M; C {1,...,t} such that A; = U{B; : s € M;}.

(2) There are finitely many disjoint sets Cy,...,C; € Geo(X) such that X \ A =
ut_, C;.

Now, we define cardinal numbers l¢(X) and led(X) for a space X as follows:
le(d)(X) = min{7 : X has a cover (partition) {L; : t € B} of locally compact

subspaces of X such that card (B) = 7}. Evidently, the inequalities
le(X) <led(X) < card(X) hold for every space X. Then we have the following.
Example. For every natural number ¢ = 1,2,... there is a countable discrete

subspace (and hence locally compact subspace) X; of the closed interval I = [0, 1]
such that

(1) X;nX; =0ifi#j,

(2) lc(An) = led(Ap) = n, for each n > 2, where A, = UL, X,

(3) le(I— Ay) =led(l— Ay,) = n, for each n > 2.

Concerning the relationship between lc and lcd, we have

Theorem 1. Let X be a Hausdorff space with le(X) < Vo, then le(X) = led(X)
holds.

As an application of the corollary above to dimension theory, we have the fol-
lowing.

Theorem 2. Let X be a perfectly normal space.

(1) If X = (UL, A;) U B, where A; € Goo(X) (in particular, if A; is a locally
compact subspace of X ) for every i, then dim X = max{dim A;,7 =1, ...,n,dim B}.

(2) If X is paracompact and X = (Uv) U B, where v = {A; : s € S} is a locally
finite system of Geo-sets in X (locally compact subspaces of X ) then dim X =
max{dim A4,, s € S,dim B}.

Melvin Henriksen Harvey Mudd College One point metric completions

abstract If a metrizable space X is a dense in a metrizable space Y, then Y is
called a metric extension of X. If T1 and T2 are metric extensions of X and there is
a continuous map of T2 into T1 that keeping X pointwise fixed, we write T1<=T2.
If X is noncompact and metrizable, then (M(X),<=) denotes the set of metric
extensions of X, where T1 and T2are identified if T1<=T2 and T2<=T1, i.e., if
there is a homeomorphism of T1 onto T2 keeping X pointwise fixed. (M(X),<=) is
alarge complicated poset studied extensively by V. Bel'nov [The structure of the set
of metric extensions of a noncompact metrizable space, Trans. Moscow Math. Soc.
32 (1975), 1-30]. We study the poset (E(X),<=) of one-point metric extensions of a
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locally compact metrizable space X. Each such extension is a (Cauchy) completion
of X with respect to a compatible metric. This poset resembles the lattice of
compagctifications of locally compact space if X is also separable. For Tychonoff
X, let X*= X X, and let Z(X) be the poset of zerosets of X partially ordered
by set inclusion. Theorem If X and Y are locally compact separable metrizable
spaces, then (E(X),<=) and (E(Y),<=) are order-isomorphic iff Z(X*) and Z(Y*)
are order isomorphic, and iff X* and Y* are homeomorphic. We construct an order
preserving bijection lamda E(X)—— >Z(X*) such that a one-point completion in
E(X) is locally compact iff its image under lamda is clopen. We extend some results
to the nonseparable case, but leave problems open. This is part of joint research
with L. Janos and R.G. Woods that will appear in C.M.U.C.

Fernando Hernandez-Hernandez IM-UNAM (Morelia) Realcompactness on
Psi-spaces

abstract 1 will discuss some conditions on the almost disjoint family CalA to get
realcompactness of ¥(CalA) and some realted problems.

Heikki Junnila University of Helsinki Hereditary covering properties of weak*-
topologies

abstract We characterize several well-established properties (such as having an
equivalent uniformly Gateauxr smooth norm or being weakly countably determined)
of Banach spaces in terms of hereditary covering properties (such as hereditary
bounded o-metacompactness or hereditary o- distributive metacompacteness) of the
weak*-topologies of the dual spaces.

Masaru Kada Advanced Research Institute for Science and Engineering, Waseda
University How many miles to 5X7

abstract Joint work with Kazuo Tomoyasu and Yasuo Yoshinobu. It is known
that the Stone-Cech compactification 3X of a metrizable space X is approximated
by the collection of Smirnov compactifications of X for all compatible metrics on
X [Woods, 1995]. If we confine ourselves to locally compact separable metrizable
spaces, the corresponding theorem holds for Higson compactifications [Kawamura-
Tomoyasu, 2001]. So how many compatible metrics do we actually need to ap-
proximate SX by Smirnov or Higson compactifications of X? Let sa(X) denote
the smallest cardinality of a set D of compatible metrics on X such that SX is
approximated by Smirnov compactifications for all metrics in D, and ha(X) the
corresponding cardinal for Higson compactifications. We present the following re-
sults. (1) For a locally compact separable metrizable space X, sa(X) = ha(X) =d
(the dominating number) if the set of nonisolated points of X is noncompact, and
otherwise sa(X) = ha(X) = 1. In particular, ha(X) is either d or 1 while it is
defined. (2) There is a metrizable space X for which sa(X) > d. This theorem
leads sa(w) = ha(w) = 1. To investigate the case of w further, we consider the
following cardinals. Let sp be the the smallest cardinality of a set D of compatible
metrics on w such that, fw is approximated by Smirnov compactifications for all
metrics in D but any finite subset of D does not suffice, and hp the corresponding
cardinal for Higson compactifications. We will present ZFC-results and consistency
results on the relationship among sp, hp and other known cardinal invariants of the
reals.



Martin Maria Kovar University of Technology, Brno Maximal compact
topologies in the light of the de Groot dual

abstract Using some advanced properties of the de Groot dual and a modified
Hofmann-Mislove theorem, we will present a positive solution of an old question
of D. E. Cameron (1977): Is every compact topology contained in some maximal
compact topology? The solution is based on a construction of a maximal ring of
sets, containing the closed sets of the given compact space, which is contained in
the family of the compact sets. If the given space is sober Ty, then one can obtain
directly the requested maximal compact topology which is generated by the ring
(Kunzi + Zyphen, 2003). However, for a general space we need the de Groot dual
of the ring, too. The topology generated by the maximal ring of sets need not
be compact in general, but luckily, its dual is always compact. And even more
luckily, between this topology and its de Groot dual there always exists a maximal
compact topology The only remaining problem is, how one can get the original
topology below that maximal compact topology. To do it, we will use a modified
Hofmann-Milsove theorem with some additional tricks, which allow us to finish and
solve the puzzle.

Justin Tatch Moore Boise State University Counterexamples to basis prob-
lems in set theory and topology

abstract 1 will present the following ZFC result.

Theorem: There is a hereditarily Lindelof, non-separable space.

One immediate consequence is that the uncountable regular topological spaces
do not have a three element basis. The combinatorial object which makes the
construction work also gives a number of other examples. In particular it produces
a binary relation R which is neither below w - w; nor above [w1]<¥ in the Tukey
order. It also gives an example of a function ¢ from w; X w;y to wy which takes all
values on any product of uncountable sets.

Peter Nyikos University of South Carolina Recent research on the compact-
open topology and modifications

abstract Let Cp(X) stand for the space of continuous functions from X to R
with the compact-open topology. For compact K, Ci(K) is simply the Banach
space given by the sup norm, but when X is not locally compact, Cy(X) is very
complicated. Gartside and Reznichenko showed that Cj (X)) is stratifiable whenever
X is a Polish space; as a result, Ci(P) has emerged as a prime candidate for a
negative solution to the 43-year-old problem of whether every stratifiable space
is M. The following problem is also of interest: Problem 1 Let X be separable
metrizable. If Ci(X) is stratifiable, must X be completely metrizable?

The converse is true. Problem 1 easily reduces to the 0-dimensional case. Since
every scattered metrizable space is completely metrizable, the only restriction on
the following partial solution to Problem 1 is in the last clause in the hypothesis.

Theorem 1 Let X be a 0-dimensional separable metrizable space which is not
scattered, and has the property that every compact subset is countable. Then
Cr(X) is not stratifiable.

This result is new even in the special case X = Q, answering a question posed
by Gary Gruenhage at the 2003 Lubbock conference. Theorem 1 made use of the
following elegant criterion in.



Theorem Let X be a 0-dimensional separable metrizable space. Then Cj(X) is
stratifiable if, and only if, it is possible to assign to each clopen subset W of X a
compact F(W) C W, and to each compact K C X a compact ¢(K) D K in such a
way that, whenever W N K # (), it follows that F(W) N ¢(K) # § also.

This theorem also figures in the proof of Theorem 2 below, which represents the
first progress towards the solution of the following problem. Problem 2 Let C (P, w)
stand for the set of continuous natural-number-valued functions on P with the
sequential modification of the compact-open topology. Is Cs(P,w) 0-dimensional?
The modification in question is the one in which a set is open iff it is sequentially
open in C(P,w). Sequential convergence in Cy(P,w) has the following appealing
characterization:

fn—=f <= fu(z,) — f(x) whenever z; — z.

A positive solution to Problem 2 would be enough to solve a problem in theo-
retical computer science. This problem is whether two competing approaches to
higher-type real-number computability actually coincide on level 3. References ,
and explain these concepts, and shows how analogues of Problem 2, obtained by
iterating the functor Cs(-,w), would establish the coincidence at all levels. Defini-
tion A space X is semiregular if it has a base of regular open sets, and countably
0-dimensional if whenever x € X and F is a countable closed subset of X, then
there is a clopen set containing x and missing F'.

Theorem 2 Cs(PP,w) is semiregular and countably 0-dimensional. In fact, if = €
Cs(P,w) \ F and F is a countable closed subset of Cs(PP,w), then there is a set U
that is open in Cp(P,w) and closed in Cs(P,w), contains F, and misses x.

Here C), refers to the product topology, which is much coarser than the compact-
open topology in this context.

[1] PMGartside and BAReznichenko, “Near metric properties of function spaces,”
FundMathi64 (2000) 97-114.

[2] PNyikos, “Stratifiability in Cj(M),” preprint available at http://www.math.sc.edu/
Tnyikos/ preprints.html

[3] ASimpson, ABauer and MEscardo, “Comparing Functional Paradigms for
Exact Real-number Computation,” in: Proceedings ICALP 2002, Springer Lecture
Notes in Computer Science 2380, pp488-500, 2002.

[4] MEscardo, JLawson and ASimpson, “Comparing Cartesian-closed Categories
of (Core) Compactly Generated Spaces,” to appear in TopAppl. Preprint available
at Simpson’s webpage, http://www.dcs.ed.ac.uk/home/als/

[5] Dag Normann, “Comparing hierarchies of total functionals,” preprint avail-
able from his webpage, http://www.math.uio.no/dnormann/

Oleg Pavlov Towson University A zero-dimensional homogenous space with
the fixed-point property

abstract Jan van Mill asked at the 2004 Spring Topology Conference whether
there exists a nontrivial zero-dimensional homogenous space with the fixed-point
property for homeomorphisms. We answer this question affirmatively.

Robert Raphael Concordia University The Epimorphic problem for C(X).



abstract We recall that epimorphisms need not be surjective in the category of
commutative rings. Assume all spaces Tychonoff. Call a space X absolutely CR-
epic if whenever X is a subspace of Y the induced ring homomorphism from C(Y)
to C(X) is a ring epimorphism.

Our goal is characterize absolutely CR-epic spaces. There is an easy description
of these spaces in the Lindelof case. There are complete results in the first countable
case, and there are nuanced countable examples in the presence of the continuum
hypothesis.

The work is joint. The most recent paper is with Barr and Kennison.

Ivan L Reilly University of Auckland Generalized closed sets

abstract This talk will discuss generalized closed sets (in the sense of Norman
Levine) and their developments. It will consider their use in characterizing low
separation properties, extremally disconnected spaces and variations of submaxi-
mal spaces. It represents joint work with J. Cao, M. Ganster, S. Greenwood and
Ch. Konstadilaki.

Ennis Rosas Universidad de Oriente-Nucleo de Sucre- Venezuela (a, 3) Contra
Continuous Functions and (a, 8) Contra Irresolute Functions
abstract

Masami Sakai Kanagawa University On k-Fréchet Urysohn property in Cp,(X)

abstract A space X is said to be k-Fréchet Urysohn if for every open U of X
and any point x in the closure of U, there exists a sequence in U which converges
to . This notion was introduced by Arhangel’skii. We give a characterization of
k-Fréchet Urysohn property in C,(X). The characterization introduce a special
subset of the real line.

A.A. Salama egypt FUZZY -CONTINUITY AND

abstract In this paper, we study the concepts of fuzzy -open sets, fuzzy -closed
sets. By using these concepts, we introduce and study the concept of fuzzy -
continuity and -compactness in fuzzy topological spaces. In section 1, we study the
concepts of fuzzy -open sets and fuzzy -closed sets in the light of quasi-coincident
notion. In section 2 we study some properties of -continuous function and Urysohn
space in fuzzy setting. In secton3, we introduce the concept of -compactness in
fuzzy setting. Also, we give a characterizations and properties of -compactness in
the light of the concept of -shading. A characterization of -compactness is given by
using the concept of -finite intersection property due to [3]. Also, we show that in
a fuzzy extremally disconnected space the concepts of -compactness, -compactness
and -near compactness are equivalent. We investigate the image and the inverse
image of -compactness under some types of functions. Finally, we define a locally
-compagctness in fuzzy setting and give some results on it.

Manuel Sanchis Universitat Jaume I de Castell (Spain) Some Solved and
some Unsolved Problems in Linearly Ordered Dynamical Systems

abstract A (discrete) dynamical system (X, f) is said to be linearly ordered (in
short, LODS) if the phase space X is a topological linearly ordered space. The
main purpose of this note is to presente what is known and what is unknown (so
far the author knows) in the realm of this kind of dynamical systems. The study
of LODS was starting by Schimer in [5] who showed that every connected LODS
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satisfies the right part of the classical Sarkovskil’s Theorem about the structure
of the periodic points and asking if the left part is also valid. This question was
answered in the negative by Baldwin [2] by proving that there is three class of
connected linearly ordered spaces related with Sarkovskii’s Theorem (the so-called
Baldwin’s classification): (1) spaces satisfying Sarkovskil’s Theorem, (2) spaces
with no continuous functions having periodic points of period not a power of 2, and
(3) spaces with no continuous functions having periodic points of period not a power
of 2, or any power of two higher than n for some n > 0. Baldwin’s classification
arises the question of finding dynamical properties characterizing spaces (1), (2)
and (3). For spaces (1), a characterization is obtained in [1] by means of the
concept of turbulent functions. For spaces (2) and (3), the question remains open.
Another way of research in LODS was begun in [1]: the study of minimal sets. For
a dynamical system (X, f), recall that a subset M C X is said to be a minimal
set for f if it is nonempty, closed and invariant, and if no proper subset of M has
these three properties. It is apparent that a finite subset is minimal if and only if
it is a periodic orbit. However, identifying infinite minimal sets may be an arduous
work (and in many occurrences, it is an open question). A well-known result in one
dimensional dynamics characterizes infinite minimal sets (see e.g. [3]) by means of
Cantor sets. Actually, every infinite minimal set for a function on the interval I is
a Cantor set and, conversely, given a Cantor subset C of I, there exists f € C(I,I)
such that C' is a minimal set for f. This elegant and powerful result arises question
of characterizing minimal sets in a continuum LODS; that is in a LODS whose phase
space is both compact and connected (recall that a separable continuum linearly
ordered space is linearly isomorphic to the interval). The first result in this field
was obtained in [1]: every infinite minimal set in a continuum LODS enjoys the
same properties as a Cantor set except that it can fail to be metrizable. Moreover,
it is also shown that it is not possible to obtain a result similar to the one in the
case of the interval: there exist linearly ordered continua where the minimal set
are exactly the periodic orbits. In spite of the previous results, no examples of
such subsets have been known. To finish we present the construction (in ZF(C')
presented in [4] of 2° non-homeomorphic, non-metrizable infinite minimal sets on a
continuum LODS of cardinality 2°. Some open question related to minimality on
LODS are also commented.

[1] Alcaraz, D. and Sanchis, M., A note on Sarkovskii’s Theorem in Connected
Linearly Ordered Spaces, International J. of Bifurcations and Chaos, 13, no. 7
(2003), 1665-1671

[2] Baldwin, S., Some limitations toward extending Sarkovskii’s Theorem to con-
nected linearly ordered spaces, Houston J. Math., 17, no. 1 (1991), 39-53.

[3] Block, L. and Coppel, W.A., Dynamics in one Dimension (Spronger-Verlag,1992)

[4] Husek, M., Sanchis, M. and Tamariz—Mascaria, A., Non Cantor Minimal
Sets, submitted.

[5] Schimer, H., A topologist’s view of Sarkovskii’s Theorem, Houston J. Math.,
11, no. 3 (1985), 385-395.

Marion Scheepers Boise State University Selection principles in topological
groups

abstract We discuss classical selection principles in the context of topological
groups.
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Paul J. Szeptycki York University Products of ordinals and sigma-products

abstract 1 will give a short survey of properties of products of ordinals and
some natural subspaces, focussing on o-products. It was proved by the author
and N. Kemoto that if X is a sigma-product or ¥-product of ordinals at base
point 0, then X is strongly zero-dimensional, countably paracompact et al. If the
base point is different from 0, these properties may fail. In particular, countable
paracompactness of a o-product depends on the choice of the base point.

Angel Tamariz Mascarta Facultad de Ciencias, UNAM Spaces of Continu-
ous Functions Defined on Mrwka Spaces

abstract Joint work with M. Hruzdk and P.J. Szeptycki.

We prove that for a maximal almost disjoint family A on w, the space Cp(¥(A), 2¢)
of continuous Cantor-valued functions with the pointwise convergence topology de-
fined on the Mréwka space ¥(A) is not normal. Using C H we construct a maximal
almost disjoint family A for which the space Cp(¥(A), 2) of continuous {0, 1}-valued
functions defined on ¥(.A) is Lindelof. These theorems improve some results due to
A. Dow and P. Simon in [DS]. We also prove that this space C,(¥(A),2) = X is a
Michael space; that is, X™ is Lindelof for every n € N and neither X“ nor X x w*
are normal.

Moreover, we prove that for every uncountable almost disjoint family A on w
and every compactification b¥(A) of ¥(A), the space Cp(b¥(A),2¥) is not normal.

Mikhail Tkachenko Universidad Auténoma Metropolitana Independent, transver-
sal, and T3-complementary topologies

abstractAll topologies we consider are assumed to satisfy the 77 separation ax-
iom. Two topologies 71 and 72 on a set X are said to be Ti-independent if the
intersection 73 N 75 is the cofinite topology on X. A pair 71, 72 of Ti-independent
topologies on an infinite set has to have very special properties. For example, if
both 7y and 7 are Hausdorff and the first topology is sequential, then the second
one is countably compact and does not contain non-trivial convergent sequences.
One can construct, under Martin’s Axiom, a Hausdorff topological group topology
T on the group of reals R such that T is Tj-independent of the usual interval
topology 7 on R (see [3]). Clearly, the topology T is countably compact and all
compact subsets of the group (R, 7)) are finite. Topologies 71 and 72 on a set X
are called transversal provided that the join 71 V 75 of 74 and 75 is the discrete
topology of X. In other words, for every point x € X there are sets U; € n
and Us € 1y such that Uy N Uz = {x}. Transversal topologies are abundant: if a
topology 71 contains two disjoint non-empty open sets, then it admits a transversal
compact Hausdorff topology [2]. In particular, every Hausdorff topology admits a
transversal compact Hausdorff topology. If topologies 71 and 7 on a set X are
Ti-independent and transversal, they are called T-complementary. Furthermore,
if there exists a bijection f of X onto itself such that 7 = {f(U) : U € 11}, then
the topology 71 is said to be self T1-complementary. It is not easy at all to con-
struct a completely regular self T7-complementary topology on an infinite set, the
first construction of such a topology was given by S. Watson [4]. Quite recently,
Shakhmatov and the author succeded in constructing a compact Hausdorff space
which is a Tj-complement of itself [1]. In the talk we will present a survey of re-
sults concerning T7-independent, transversal and 7;-complementary topologies and
formulate a number of open problems in this area.
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[1] D. Shakhmatov and M. Tkachenko, A compact Hausdorff topology that is
Ty -complement of itself, Fund. Math. 175 (2002), 163-173.

[2] D. Shakhmatov, M. Tkachenko, and R. Wilson, Transversal and T;-independent
topologies, Houston J. Math. 30 no. 2 (2004), 421-433.

[3] M. G. Tkachenko and Iv. Yaschenko, Independent group topologies on Abelian
groups, Topology Appl. 122 (2002) no. 1-2, 425-451.

[4] W.S. Watson, A completely regular space which is the Tj-complement of
itself, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1281-1284.

Vladimir Tkachuk Universidad Autonoma Metropolitana de Mezico Domina-
tion by the irrationals and K-analyticity.

abstract We consider the irrationals to be the space w”; given p,q € w* let p < ¢
if p(n) < ¢(n) for all n € w. A space X is dominated by the irrationals if there exists
a compact cover {K, : p € w”} of the space X such that p < ¢ implies K, C K.
The space X is said to be strongly dominated by the irrationals if if there exists a
compact cover {K, : p € w*} of the space X such that p < ¢ implies K, C K, and,
for any compact K C X thereis p € w* such that K C K. Every K-analytic space
is dominated by the irrationals; since the converse of this statement does not hold,
it is a natural question when the domination with the irrationals coincides with K-
analyticity. We prove that, for any space X, the space Cp(X) is dominated by the
irrationals if and only if it is K-analytic. The importance of strong domination by
the irrationals stems from the fact that this concept generalizes hemicompactness;
besides, a second countable space is strongly dominated by the irrationals if and
only if it is completely metrizable. We show that it is independent of ZFC whether
wj is strongly dominated by the irrationals. We prove, among other things, that a
space Cp(X) is strongly dominated by the irrationals if and only if X is countable
and discrete.

Artur Hideyuki Tomita Sau Paublo University A solution to Comforts ques-
tion on the countable compactness of powers of a topological group.

abstract Comfort and Ross (Pacific J., 1966) showed that pseudocompactness
is productive in the class of topological groups. E. van Douwen (Trans. AMS,
1980)showed that Martins Axiom imply that there exists two countably compact
groups whose square is not countably compact. Hart and van Mill (Trans. AMS,
1991)showed that under Martins Axiom for countable posets, there exists a count-
ably compact group whose square is not countably compact. Garcia-Ferreira,
Tomita and Watson (Proc. AMS, to appear) showed that the existence of a se-
lective ultrafilter implies the existence of two countably compact groups whose
product is not countably compact. Recently, Tomita showed that from the exis-
tence of a selective ultrafilter, there exists a countably compact group whose square
is not countably compact. Scarborough and Stone (Trans. AMS, 1966) showed that
the product of a family of countably compact spaces is

countably compact if every product of a subfamily of size at most 22° is countably
compact. Ginsburg and Saks (Pacific J., 1975) showed that it suffices to consider
subfamilies of size at most 22°. The example of Hart and van Mill and the result
of Ginsburg and Saks motivated Comfort (Open Problems is Topology, Question
477) to ask the following;
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Is there, for every (not necessarily infinite) cardinal o < 2%, a topological group
G such that G is countably compact for all cardinals v < o but G is not countably
compact?

Using Martin’s Axiom for countable posets, it was shown that 2 (Hart and van
Mill, op. cit.), some k € [n + 1,2"] for each n € w (1996, Tomita, CMUC),
3 (Tomita, Topology Appl., 1999) and every positive integer (Tomita, Topology
Appl., to appear) are such cardinals. However, Comfort’s Question remained open
for infinite cardinals.

Garcia-Ferreira and Tomita (Bol. Soc. Mex. Mat., 2003) showed via forcing
there exists a family of topological groups {G¢ : £ < 2°} such that for each I C 2°,
ng ; G¢ is countably compact if and only if |I| < 2°. However, the method did not
allow to take powers nor could be used in infinite cardinals smaller than 2°.

In this talk we will sketch the construction of consistent examples to answer
Comfort’s Question in the affirmative for every cardinal a < 2¢. Our examples do
not require forcing nor some form of Martin’s Axiom, only selective ultrafilters and
the regularity of 2°. We improve a technique that appears in Tomita and Watson
(Topology Appl., 2004) that showed that incomparable selective ultrafilters are
Comfort-group incomparable.

Yolanda Torres Falcén Universidad Auténoma Metropolitana - Iztapalapa An
example of a o-compact monothetic group which is not compactly generated

abstract We construct a countable (hence o-compact) monothetic topological
group G which is not compactly generated, thus answering in the negative a question
posed by Fujita and Shakhmatov. In addition, our group G is precompact and
sequentially complete.

Hideki Tsuiki and Shuji Yamada Kyoto University and Kyoto Sangyo Uni-
versity Every Dense-in-itself Compact Metric Space has a Full {0, 1, L }-Representation

abstract

We consider a representation of a space X as infinite {0, 1, L }-sequences. More
precisely,

1. we consider an embedding ¢ of X in T, which is the space of infinite {0, 1, L}-

sequences with the Scott topology,

2. let SO = {z € X | ¢(z)[n] =0} and S} = {z € X | p(x)[n] = 1}. When

¢(z)[n] = L, every neighbourhood of z intersects with both SO and S}.
For such a representation, SO and S} are regular opens which are exterior of each
other, and S2, S! (n =0,1,2,...) forms a subbase of X, which we call a dyadic
subbase [Tsuiki04, in Topology Proceedings].

We say that such a representation is full if all the {0, 1}-sequences are obtained
by filling the bottoms of the images of ¢ with 0 and 1. Fullness corresponds to the
no-redundancy of the representation.

In this talk, we show that every dense-in-itself compact metric space has a full
{0,1, L }-representation. This construction also entails that when a compact space
X is embedable in I" (it holds, when n >= 2dimX + 1), we can form a surjective
continuous map from X to I™, which is just like the space-filling Peano curve from
I to I™.

Jerry E. Vaughan University of North Carolina at Greensboro. On 7-pseudocompact
spaces
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abstract Here we consider Ty1-spaces, and infinite cardinals (denoted 7 or ).
We present some new results concerning T-pseudocompact spaces. Recall two defi-
nitions of J. F. Kennison: a space X is 7-pseudocompact provided f(X) is a closed
subset of R” for every continuous function f: X — R", and a set H C X is called
a Z.-set provided H is the intersection of at most 7 zero-sets. It is easy to see that
T-pseudocompactness is weaker than the classical property of Alexandroff-Urysohn
initially T-compactness (i.e., every open cover of cardinality at most 7 has a finite
subcover). A. V. Arhangelslii defined a space to be Z.-normal provided for every
pair H, K of disjoint sets with H a Z,-set and K a closed set, there exists a Z,-set G
such that K C G and GNH = (). Theorem 1: If X is Z,-normal, 7-pseudocompact
and < 7-bounded, then X is initially 7-compact. Theorem 2. If X is Z,.-normal
and 7T-pseudocompact, then X is initially xk-compact for all k such that 2<% < 7.
These theorems generalize several known results.

Richard G. Wilson Universidad Auténoma Metropolitana, Iztapalapa Minimal
properties between T} and T5

abstract A space is a US-space if every convergent sequence has a unique limit;
it is an SC-space if each convergent sequence together with its limit is closed and
is a K (C-space if every compact subset is closed. We study the existence of spaces
which are minimal with respect to these properties. We obtain a number of results
regarding minimal SC-spaces, we show that the class of infinite minimal U S-spaces
is empty and we give a consistent example of a Tychonoff topology which contains
no minimal K C-topology. The only previously known example of such a space is
not Hausdorff (see [F]).

[F] Fleissner, W. G., A Tg-space which is not Katétov T, Rocky Mountain J.
Math., 10 no. 3 (1980), 661-663.

Kohzo Yamada Department of Mathematics, Faculty of Education, Shizuoka
University Products of straight spaces with compact spaces

abstract A metric space X is called straight if any continuous function which
is uniformly continuous on each set of a finite cover of X by closed sets, is itself
uniformly continuous. In this talk, we show that for a straight space X, X X
C is straight if and only if X x K is straight for eny compact metric space K.
Furthermore, we show that for a straight space X, if X x C is straight, then X is
precompact, where C is the convergent sequence {1/n :n € N} with its limit 0 in
the real line with the usual metric. Note that the notion of straightness depends
on the metric on X. Indeed, the above result yields that R x C is not straight,
where R means the real line with the usual metric. On the other hand, we show
that (0, 1) x C is straight, where (0, 1) means the unit open interval with the usual
metric.

Kaori Yamazaki University of Tsukuba Base-normality and product spaces

abstract We introduce the notion of base-normality, which is a natural general-
ization of base-paracompactness introduced by J. E. Porter (2003). A space X is
said to be base-normal if there is a base B for X with |B| = w(X), where w(X) is
the weight of X, such that every binary open cover {Up, U1} of X admits a locally
finite cover B’ of X by members of B such that B’ refines {Up,U;}. Every base-
normal space is normal. Note that a Hausdorff space X is base-paracompact if and
only if X is base-normal and paracompact.
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We prove the following:

Theorem 1. For a base-normal space X and a metrizable space Y, the product
space X X Y is normal if and only if X X Y is base-normal.

Theorem 2. For the countable product X = II;c y X; of spaces X; such that finite
subproducts Il;<,X;, n € N, are base-normal, X is normal if and only if X is
base-normal.

Theorem 3. Every Y-product of metric spaces is base-normal.

Beatriz Zamora Aviles York university Countable Dense Homogeneity with
Lipschitz functions.

abstract A topological space X is CDH if given A, B countable dense subsets of
X, there exists f : X — X an homeomorphism such that F[A] = B. Two metric
variants (iso-CDH and LCDH) of countable dense homogeneity are considered here.
We show that every separable Banach space is LCDH, that is: Given A, B two
countable dense subsets of a separable Banach space X and e € (0,1) there is an
f:X — X such that f[A] =Band1—¢ < % <1+c¢ for every z,y € X.



