counter in iweb
Geometria Algebraica Computacional

Geometría (Algebraica) Computacional

Temas Selectos de Geometría
Trolebús: MAT-510 -- 18SMA01 -- 18SGAL01

Martes y Jueves: 12:30 - 13:50 (Salón G101 "Diego Bricio")



Abraham Martín del Campo

Contacto:   abraham.mc[at]cimat.mx,   cubículo K209

Horario de Oficina:  por cita o después de clase

Inicio de clases:   Martes 21 de Enero.
Fin de clases:   Jueves 28 de Mayo.

*********** Contingencia COVID ***********
Reuniones semanales:
Jueves y Viernes de 12:30 a 2:00 pm (Por Zoom con la siguiente liga)


Notas del Curso: Puedes descargar las notas aquí: Notas (actualizadas el 30 de abril de 2020)


Lecturas durante contingencia COVID:

Semana Sección de las Notas
23 mar - 27 mar Repaso Cap. 4 pp. 39-39, inicio Cap. 5 pp. 41-43 (Teorema Bezout)
30 mar - 3 abr Secc. 5.1 pp. 41-46
6 - 10 abr Secc. 5.2 pp. 46-51
13 - 17 abr Secc. 6.1 y principios de 6.2 pp. 55-58
20 - 24 abr Secc. 6.2 y 6.3 pp. 58-64

Temario:
Daremos una introducción a la Geometría Algebraica Computacional, cubriendo los siguientes temas

  1. Bases de Gröbner.
  2. Resolución de sistemas de ecuaciones polinomiales.
  3. Soluciones reales de sistemas polinomiales.
  4. Ideales tóricos.
  5. Geometría Algebraica Numérica.

El temario más detallado lo puedes encontrar aquí: Temario.pdf



Prerrequisitos:

El curso será autocontenido, aunque se asumirá una formación básica en Álgebra Lineal y Moderna. Cierta familiaridad con ideales de anillos conmutativos será útil, aunque no es necesaria. Se asumirá también que el estudiante tiene acceso a algún programa de Álgebra Conmutativa Computacional (aunque no necesariamente sepa programar en él).


Material:


Tareas:

Tarea 0  Instala al menos un programa para poder calcular cosas en álgebra conmutativa: Tarea 1  Preguntas (Fecha de entrega 18/feb)

Tarea 2  Preguntas (Fecha de entrega 10/mar)

Tarea 3  Preguntas (Fecha de entrega 27/abr)

Bibliografía sugerida: